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FOREWORD 

The research documented in this report was conducted as part of the Federal Highway 
Administration’s (FHWA’s) Evaluation of Low-Cost Safety Improvements Pooled Fund Study 
(ELCSI-PFS). FHWA established this PFS in 2005 to conduct research on the effectiveness of 
safety improvements identified by the National Cooperative Highway Research Program Report 
500 Guides as part of the implementation of the American Association of State Highway and 
Transportation Officials’ Strategic Highway Safety Plan. ELCSI-PFS studies provide a crash 
modification factor and benefit–cost economic analysis for each targeted safety strategy 
identified as a priority by member States of the PFS. 

This project identified focus crash and facility types and associated contributing factors to better 
inform applications of systemic safety improvements. Three data sources were used to conduct 
contributing-factor analyses: crash and roadway inventory from the Highway Information 
System, climate data from the National Oceanic and Atmospheric Administration, and 
socioeconomic census data from the U.S. Census Bureau (FHWA 2018c; NOAA 2018; 
U.S. Census Bureau 2018). The contributing-factor analysis on road segments used data from 
Ohio and Washington State, and the analysis on intersections used data from California and 
Ohio. For the analysis, the research team used the random-forest method to identify the most 
predictive variables and then created plots of random forest–predicted crash frequencies as a 
function of the predictor variables to observe the general trends in the relationships. 

A Quick Reference Guide (FHWA-HRT-20-053) was also developed from this project and aims 
to assist safety practitioners in selecting countermeasures to address focus crash types (Porter 
et al. 2020). This report and the Quick Reference Guide will benefit safety engineers and safety 
planners by providing greater insight into increased highway safety. 

Brian P. Cronin, P.E. 
Director, Office of Safety and Operations  

Research and Development 

Notice 
This document is disseminated under the sponsorship of the U.S. Department of Transportation 
(USDOT) in the interest of information exchange. The U.S. Government assumes no liability for 
the use of the information contained in this document. 

The U.S. Government does not endorse products or manufacturers. Trademarks or 
manufacturers’ names appear in this report only because they are considered essential to the 
objective of the document. 

Quality Assurance Statement 
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ensure continuous quality improvement.
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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2 
ft2 square feet 0.093 square meters m2 
yd2 square yard 0.836 square meters m2 
ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2 

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 
yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1,000 L shall be shown in m3 
MASS 

oz ounces 28.35 grams g 
lb pounds 0.454 kilograms kg 
T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 

ILLUMINATION 
fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf poundforce 4.45 newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH 
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 
m2 square meters 10.764 square feet ft2 
m2 square meters 1.195 square yards yd2 
ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 
m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz 
kg kilograms 2.202 pounds lb 
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lb) T 

TEMPERATURE (exact degrees) 
°C Celsius 1.8C+32 Fahrenheit °F 

ILLUMINATION 
lx lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N newtons 2.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. 
(Revised March 2003) 
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1 

EXECUTIVE SUMMARY 

This report describes the efforts to identify focus crash and facility types (FCFTs) and associated 
crash-contributing factors (herein referred to as “contributing factors”) to better inform 
applications of systemic safety improvements. Systemic safety improvements—when selected 
and targeted appropriately—are a tremendous opportunity to proactively reduce crashes and their 
resulting harm. These improvements are particularly useful for crash types that are prevalent but 
somewhat disperse in their occurrence, or in other words, high numbers of certain crash types 
scattered across the road system at low densities of resultant fatalities. An FHWA publication, 
Using Risk to Drive Safety Investments, notes that “fatal and other life-threatening crashes often 
are distributed widely across State and local highway systems, in both urban and rural 
environments, with few individual locations experiencing a high number or sustained occurrence 
of severe crashes” (Preston et al. 2013b). These types of prevalent but scattered systemic safety 
issues do not lend themselves to the site-specific detection and diagnosis that characterize a more 
traditional approach to road-safety management. 

Within the context of systemic safety analysis and management, the main objectives of this 
project were to select reliable and applicable data resources, statistical methodologies, analysis 
procedures, and tools; conduct data analysis to identify and validate FCFTs and associated 
contributing factors; and identify potential low-cost safety strategies that may effectively be used 
as systemic safety improvements. 

FCFTS 

The research team analyzed the Fatality Analysis Reporting System (FARS) and the Highway 
Safety Information System (HSIS) databases to select FCFTs (NHTSA 2018a; FHWA 2018c). 
The FARS database contains information on all fatal crashes involving a motor vehicle traveling 
on a public trafficway in all 50 States, the District of Columbia, and Puerto Rico. The HSIS 
database contains information on crashes of all severities (i.e., fatal crashes, injury crashes, and 
property-damage-only crashes) occurring on State-operated and -maintained roads for the 
participating States. The analysis incorporated data from four States that are part of HSIS: 
California, Minnesota, Ohio, and Washington State. The research team defined potential FCFTs 
by using combinations of variables in FARS and HSIS. To rank the list of FCFTs, the research 
team used the number of fatal crashes and, for the HSIS States, the number of fatal-plus-
incapacitating-injury crashes during the observation period that corresponded to each potential 
FCFT. Based on the rankings, the research team selected 15 FCFTs for the first contributing-
factors analysis: 

• Intersection FCFTs: 
1. Angle (ANG) crashes on rural two-lane roads at four-leg minor-road stop-controlled 

intersections (daytime and nighttime). 
2. ANG crashes on urban two-lane roads at four-leg minor-road stop-controlled 

intersections (daytime). 
3. ANG crashes on rural two-lane roads at three-leg minor-road stop-controlled 

intersections (daytime). 
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4. ANG crashes on urban multilane divided roads at four-leg signalized intersections 
(daytime). 

5. ANG crashes on urban multilane undivided roads at four-leg signalized intersections 
(daytime). 

6. ANG crashes on rural multilane divided roads at four-leg minor-road stop-controlled 
intersections (daytime). 

• Nonintersection FCFTs: 
1. Run-off-road (ROR) crashes on rural two-lane roads on horizontal curves (daytime 

and nighttime). 
2. ROR crashes on rural two-lane roads on tangent segments (daytime and nighttime). 
3. Lane-departure (LNDP) crashes on rural two-lane roads on horizontal curves (daytime 

and nighttime). 
4. LNDP crashes on rural two-lane roads on tangent segments (daytime and nighttime). 
5. Head-on (HEO) crashes on rural two-lane roads on horizontal curves (daytime and 

nighttime). 
6. HEO crashes on rural two-lane roads on tangent segments (daytime and nighttime). 
7. ANG crashes on rural two-lane roads on tangent segments (daytime). 
8. Rollover/overturn (ROLL) crashes on rural two-lane roads on horizontal curves 

(daytime and nighttime). 
9. ROLL crashes on rural two-lane roads on tangent segments (daytime and nighttime). 

Pedestrian crashes represented a significant number of fatal crashes; however, identifying 
contributing factors for pedestrian crashes is a challenging task without quality exposure data 
(i.e., the total number of pedestrians crossing at segments and intersections or walking parallel to 
segments). Given the significant number of pedestrian crashes, this report incorporates the results 
of Thomas et al. (2017) to identify contributing factors for two types of pedestrian crashes: 

• All types of pedestrian crashes at intersections. 
• Pedestrian crashes at intersections involving a crossing pedestrian and a vehicle going 

straight. 

ANALYSIS OF CONTRIBUTING FACTORS 

The research team analyzed contributing factors using data from three different sources: crash 
and roadway inventory from HSIS, climate data from the National Oceanic and Atmospheric 
Administration, and socioeconomic census data from the U.S. Census Bureau (FHWA 2018c; 
NOAA 2018; U.S. Census Bureau 2018). The research team completed all linkages of road 
segments to climate and census data in the spatial environment. To simplify the linking process, 
roadway segments were represented as point features according to the midpoint of the segment. 
For climate data, the source data were in a point file with each weather station shown as a point 
on the map. The research team linked each roadway segment to the closest weather station by a 
simple straight-line distance measurement. For census data, the source data were in a polygon file 
with each census-block group shown as a shape on the map. Each roadway segment was linked to 
the census-block group that contained the midpoint of the segment. 
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The research team used the random-forest method to identify contributing factors that 
corresponded to the FCFTs. Random forests help identify predictors that may not appear in the 
output of a single classification or regression tree but are nevertheless highly related to the target 
variable. Researchers commonly use random forests to display the percentage increase in mean 
squared error with the removal of a variable from the random-forest model. Random forests do 
not directly indicate if variables correspond to contributing factors that increase or decrease 
predicted crash frequencies. However, plots of random forest–predicted crash frequencies as a 
function of the variables of interest provided the information needed to identify contributing 
factors, estimate the direction of the relationship, and inform countermeasure identification to 
mitigate the presence of factors that increase predicted crash frequencies. The research team used 
data from California and Ohio to analyze contributing factors for intersection FCFTs and data 
from Ohio and Washington to analyze contributing factors for nonintersection (i.e., segment) 
FCFTs. 

Roadway factors uncovered by the analyses as influencing the frequencies of the different crash 
types were generally consistent with what was expected based on previous research and existing 
practice. Factors associated with increasing crash frequencies include the following: 

• Larger average daily traffic volumes. 
• Steeper vertical grades. 
• Sharper horizontal curve radii. 
• Narrower lane and shoulder widths. 
• Unpaved shoulders or no shoulders. 
• Mountainous terrains. 
• Higher speed limits. 
• Wider crossing distances at intersections (captured by lane and median widths on 

approaches). 
• Absence of left- and right-turn channelization at intersections. 

Agencies with sufficient data and analysis capabilities can refer to the FHWA Systemic Safety 
Project Selection Tool for discussion of how to analyze data to identify contributing factors given 
a specific FCFT (Preston et al. 2013a). Agencies without sufficient data and analysis capabilities 
can reference the factors developed in this research to help identify countermeasures and 
prioritize sites for systemic safety improvements. 

Findings connected to socioeconomic- and weather-related factors showed promise, but there 
is not yet a significant amount of theory to support or refute the socioeconomic- and 
weather-related results of this effort. Findings related to socioeconomic variables are likely 
representing differences in travel behavior, driving behavior, and driving capabilities that seem 
key for safety analyses but are generally not incorporated into segment- and intersection-specific 
analyses that also include traffic and roadway factors. Weather-related findings are likely 
representing differences in visibility, road conditions, and driver experience and behavior. Both 
sets of factors bring significant potential to the process of making more informed decisions about 
sites that have higher levels of crash potential. (Appendix H includes an example analysis of 
model performance with and without consideration of socioeconomic variables.) A multiyear 
study focused on testing various alternatives and developing safety-analysis guidance on 
collecting, merging, and analyzing crash, traffic, roadway, census, and weather data is needed. 
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The most challenging aspect of implementing the random-forest method within the context of 
this project was the limited ability to interpret the direction and form of the relationship between 
a factor of interest and expected crash frequency. This research implemented a relatively simple 
approach, searching for primarily linear trends between each factor and the corresponding 
random forest–predicted crash frequency. Future efforts should explore more effective ways to 
uncover and interpret the relationships contained in the random forests. 

While the research team was able to compare the random-forests results to the findings of 
previous research on related crash types, it was not able to incorporate prior information or 
knowledge into the analyses. Bayesian approaches hold significant promise, and future efforts 
should explore these approaches to identify contributing factors for FCFTs. Causal Bayesian 
networks, such as those applied by Karwa et al. (2011), have significant potential but will require 
a considerable amount of time to fully explore within the context of this project. 

COUNTERMEASURE-SELECTION PROCESS 

Following the selection of FCFTs and analysis of contributing factors, this report presents a 
six-step countermeasure-selection process, as follows: 

1. Identify a focus crash type. 
2. Identify contributing factors for the focus crash type. 
3. Assemble a list of potential countermeasures that address the focus crash type. 
4. Identify countermeasures that address roadway factors associated with the focus crash 

type. 
5. Identify countermeasures with crash modification factors (CMFs). 
6. Select a countermeasure. 

To assist practitioners with implementing this process, this report also provides various examples 
demonstrating the process for selecting countermeasures to address focus crash types. 
Additionally, this report provides proven safety countermeasures to mitigate the presence of 
common contributing factors. In developing practitioner guidance, the research team observed 
that most CMFs have not been developed for crash types at the level of disaggregation that may 
be needed for systemic safety applications. Similarly, expected changes in crash frequencies 
reflected by CMFs typically represent evaluation results of site-specific applications of a 
treatment. Additional work on estimating network-wide safety impacts resulting from systemic 
applications of countermeasures is needed. 
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

The Federal Highway Administration (FHWA) established the Development of Crash 
Modification Factors (DCMF) program in 2012 to address highway safety research needs for 
evaluating new and innovative safety-improvement strategies and developing reliable quantitative 
estimates of their effectiveness in reducing crash frequency and severity. The ultimate goal of the 
DCMF program is to save lives by identifying new strategies that effectively reduce crash 
frequency and severity and promoting those strategies for nationwide implementation by 
providing measures of their safety effectiveness and benefit–cost (B/C) ratios gleaned through 
research. State transportation departments and other transportation agencies should have 
objective measures of safety effectiveness before investing in broad applications of safety 
countermeasures. Forty State transportation departments provide technical input to the DCMF 
program and implement new safety improvements to facilitate evaluations. These States are 
members of the Evaluation of Low-Cost Safety Improvements Pooled Fund Study, which 
functions under the DCMF program. 

Another goal of the DCMF program is to advance highway safety and related research by 
establishing a sound foundation for developing highway transportation-specific statistical 
methodologies in cooperation with the American Statistical Association and other statistician 
communities. Several efforts have been conducted or are underway in pursuit of that goal. One 
such effort, Highway Safety Statistical Paper Synthesis, included a review and critical synthesis 
of recent papers that explored refinements to current research methods (including study design 
and statistical analysis) and proposed new methods to assess the safety performance of highways 
and streets (Persaud et al. 2001). This effort included methods to predict expected crash 
frequencies and severities, assess underreporting in crash frequency models, use nontraditional 
datasets to analyze safety, and estimate crash modification factors (CMFs) using alternative 
approaches to study design and analysis. The intention of the critical synthesis was to serve as a 
resource to researchers and others looking to advance the science of highway safety. 

As part of the Highway Safety Statistical Paper Synthesis, researchers demonstrated classification 
and regression trees (CART) and random forests within the context of conducting statistical 
road-safety analyses. They concluded that tree-based models hold strong potential for road safety 
analyses. These models are particularly effective in making predictions of expected crash 
frequency, which has applications in multiple contexts (e.g., network screening, alternatives 
assessment, predicting “what would have been” in before–after studies). Tree-based methods also 
have the potential to inform specifications that are part of more traditional modeling approaches 
through identifying the “most predictive” right-hand-side variables and uncovering informative 
relationships between left-hand-side and right-hand-side variables. 

The DCMF effort applied CART and random forests to make predictions of expected crash 
frequency as a function of traffic, geometric design, and operational features along directional 
freeway segments that have a right-hand-side entrance ramp followed by a right-hand-side exit 
ramp. This current project situates the exploration of potential applications of tree-based methods 
within the context of quantitative approaches to systemic safety analysis. 
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SYSTEMIC APPROACH TO ROAD-SAFETY MANAGEMENT 

Common approaches to road-safety management focus on identifying and diagnosing high-crash 
locations and implementing projects to address the predominant safety concerns at those 
locations. Such approaches to road-safety management generally consist of six steps: 

1. Network screening.  
2. Site diagnoses.  
3. Countermeasure selections.  
4. Economic appraisals. 
5. Project prioritization. 
6. Safety-effectiveness evaluations. 

Researchers use network screening to identify “sites with promise” (i.e., sites that show potential 
for safety improvements), usually characterized as sites with substantially higher than expected 
crash frequencies given traffic volumes and other site characteristics. Network screening methods 
use “total” crashes (i.e., all crash types and severities) or crashes of a specific type and/or severity 
to inform site ranking. Once researchers select specific sites for investigation, the subsequent 
steps occur at the individual site level. Safety practitioners attempt to diagnose underlying 
crash-contributing factors (herein referred to as “contributing factors”) occurring at a specific 
roadway segment or intersection and develop targeted countermeasures. Researchers estimate 
economic and safety benefits to ensure a project is cost effective and to prioritize investments. 
Prioritization can occur at two levels: the project level to prioritize proposed countermeasures 
within a project and the program level to determine an optimal combination of projects within a 
fixed budget to maximize the benefits of the entire program of projects. The final step is to 
evaluate the impacts of completed projects, including safety, for individual projects and for 
overall program effectiveness. 

Significant progress has been made in the development of methodologies (e.g., empirical Bayes 
estimation) and tools (e.g., safety-performance functions, CMFs) to support data-driven, 
quantitative approaches to the safety-management process. The current states of related 
knowledge, tools, and practices are captured in the Highway Safety Manual (HSM), 
AASHTOWare® Safety Analyst™, CMF Clearinghouse, Interactive Highway Safety Design 
Model, and a number of other tools and resources listed in the Roadway Safety Data and Analysis 
Toolbox (AASHTO 2010; AASHTO n.d.; FHWA 2018a; FHWA 2018d; FHWA 2018e). 

While identifying and treating sites with promise can result in significant safety benefits, some 
focus crash and facility types (FCFTs) cannot be fully addressed by this approach to road-safety 
management. Rather than a high number of crashes at specific locations, these FCFTs are 
characterized by higher numbers of crashes scattered across the road system at low densities. 
Examples of crash types include those involving nonmotorized-vehicle users (typically motor 
vehicles hitting pedestrians or bicycles), roadway-departure crashes on low-volume roads, and 
fatal and incapacitating-injury crashes (i.e., KA crashes) on almost any facility type. An FHWA 
publication, Using Risk to Drive Safety Investments, notes that “fatal and other life-threatening 
crashes often are distributed widely across State and local highway systems, in both urban and 
rural environments, with few individual locations experiencing a high number or sustained 
occurrence of severe crashes” (Preston et al. 2013b). These types of systemic safety issues do not 
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lend themselves to site-specific detection and diagnosis. Alternative approaches that identify and 
diagnose potential for safety improvements at a system level are needed. 

The systemic approach to road-safety management is a method of safety management that 
typically involves widely implementing lower (unit) cost safety improvements based on 
characteristics that indicate greater potential for future crashes. While the outcome of a site-based 
approach to identifying safety projects is a range of appropriate countermeasures for varying 
safety issues and crash types at individual locations, the outcome of a systemic approach is 
projects that implement one or more proven, cost-effective countermeasures across a number of 
sites to effectively manage the potential for future crashes of a particular focus crash type. This 
key distinction results in sites being treated not necessarily because of crash history but because 
of estimated crash potential, a strategy identified in FHWA’s Highway Safety Improvement 
Program for reducing fatalities and serious injuries in the United States. The systemic approach is 
also different than a systematic approach, in which practitioners implement countermeasures at 
all sites regardless of the potential for future crashes. 

Agency experiences with systemic approaches to safety management continue to increase, but a 
review of practices shows that, to date, systemic safety analysis often includes subjective 
approaches to identifying contributing factors and characterizing crash potentials. Agencies need 
additional guidance to help select and target their systemic safety improvements to make the most 
efficient investment decisions, including detailed and data-driven information on crash types that 
can be effectively addressed with systemic approaches to safety management as well as the 
situations (characterized by contributing factors and facility types) where these crashes are more 
likely to occur. 

OBJECTIVE 

The goal of this project was to identify FCFTs and associated contributing factors to inform 
applications of systemic safety improvements. Within the context of conducting systemic safety 
analysis and management, the objectives of this project were as follows: 

• Select reliable and applicable data resources, statistical methodologies, analysis 
procedures, and tools. 

• Conduct data analysis to identify and validate FCFTs and associated contributing factors. 
• Identify potential low-cost safety strategies that may effectively be used as systemic 

safety improvements. 
• Develop a technical report and Quick Reference Guide for identifying focus crash types 

and contributing factors (Porter et al. 2020). 
• Develop a solicitation and evaluation criteria to identify volunteer agencies to implement 

systemic safety improvements. 

The Quick Reference Guide is a stand-alone document separate from this technical report (Porter 
et al. 2020). The solicitation and evaluation-criteria documents are not available for distribution.  
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ORGANIZATION OF THE REPORT 

This technical report is organized into seven chapters: 

• Chapter 1 provides background information and project objectives. 
• Chapter 2 includes a literature and database review, with a focus on promising data 

sources that support the objectives of this project. 
• Chapter 3 outlines the framework for defining crash types, facility types, potential for 

future crashes, and contributing factors. 
• Chapter 4 focuses on identifying FCFTs. It contains a discussion of databases used and 

implemented methodology for FCFT identification. A list of the 15 FCFTs identified for 
further analysis is also contained in this chapter. 

• Chapter 5 describes the analysis of contributing factors for the 15 FCFTs. An overview of 
databases used for the analysis is followed by identifying the most influential predictor 
variables for each FCFT and determining whether the influential predictor variables are 
associated with increases or decreases in expected crash frequencies. 

• Chapter 6 provides a process for identifying and selecting countermeasures for focus 
crash types, multiple examples of applying the countermeasure-selection process, and a 
concise overview of countermeasures that address the FCFTs and contributing factors. 

• Chapter 7 concludes this report by providing a summary of accomplishments, 
conclusions, and recommendations for future work.
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CHAPTER 2. LITERATURE REVIEW 

The objectives of this literature review were to draw key information from past studies to identify 
common contributing factors for various FCFTs, including methodologies used to select these 
factors, and identify and review emerging research and practice on systemic safety analysis. 

OVERVIEW OF CONTRIBUTING FACTORS AND METHODS 

This section provides a review of relevant past studies, identifying common contributing factors 
for various FCFTs. Additionally, this section provides a review of methodologies commonly used 
to identify these contributing factors. Together, this information provided the basis for selecting 
user types, crash types, facility types, contributing factors, and methodologies for this research. 
This section also defines each of the aforementioned items and presents a discussion of literature 
findings for each. Last, contributing factors by applicable facility types, which the research team 
determined by the presence of statistical associations in cross-sectional or before–after models in 
the literature findings, are summarized. 

The literature review is concentrated on studies, guides, and reports with a focus on the broad 
consideration of contributing factors. Since the motivation was to identify potential crash types, 
facility types, contributing factors, datasets, and statistical methodologies, and there are 
innumerable studies that have examined the impact of an isolated contributing factor, it was not 
cost- or time-effective to focus on studies looking only at individual contributing factors. 

The following sections identify further considerations for this research with respect to user types, 
crash types, facility types, contributing roadway factors, datasets, and methodologies. 

Contributing Factors 

User Types 

User types refer to the users of the roadway. The American Association of State Highway and 
Transportation Officials’ (AASHTO’s) A Policy on Geometric Design of Highways and Streets 
(2011) considers the following roadway users: 

• Pedestrians. 
• Vehicles: 

o Passenger cars. 
o Buses. 
o Trucks. 
o Recreational vehicles. 
o Bicycles. 

Pedestrian crashes and bicycle crashes almost universally involve a different vehicle type 
(e.g., passenger car) and are typically considered as a separate crash type (e.g., bicycle–vehicle 
collisions). In crash analyses, buses and recreational vehicles are often not considered 
independently as vehicle types but instead are lumped into “all vehicles” or “large vehicles”. 
Noting how these vehicle types are treated when identifying crash contributing factors is a key 
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detail of the analysis; if considered separately, crashes involving these vehicle types may have 
differing crash contributing factors than crashes that do not distinguish between these vehicle 
types. 

Crash Severities and Types 

Crashes are generally defined by two attributes: type and level of severity. Type refers to the 
number of vehicles, crash location, and manner of collision (e.g., single-vehicle crash, 
run-off-road [ROR] crash), while severity refers to the level of injury resulting from a crash. 
Police officers code type and severity on crash-reporting forms, and codes for both attributes are 
determined subjectively based on physical evidence and statements made by those involved in the 
crash. 

Most agencies use the KABCO crash-severity scale—which consists of five levels of injury—for 
reporting the most severe injury in a given crash as well as injuries of drivers and occupants 
involved in a crash. KABCO severities, as defined in the 5th edition of Model Minimum Uniform 
Crash Criteria, include the following (NHTSA 2017): 

• Fatal Injury (K)—A fatal injury is any injury that results in death within 30 days after the 
motor vehicle crash in which the injury occurred. If the person did not die at the scene but 
died within 30 days of the motor vehicle crash in which the injury occurred, the injury 
classification is changed from the attribute previously assigned to the attribute “Fatal 
Injury.” 

• Suspected Serious Injury (A)—A suspected serious injury is any injury other than fatal 
that results in one or more of the following: 
o Severe laceration resulting in exposure of underlying tissues/muscles/organs or 

significant loss of blood. 
o Broken or distorted extremity (arm or leg). 
o Crush injury. 
o Suspected skull, chest, or abdominal injury other than a bruise or minor laceration. 
o Significant burn (second- and third-degree burn over 10 percent or more of the body). 
o Unconsciousness when taken from the crash scene. 
o Paralysis. 

• Suspected Minor Injury (B)—A minor injury is any injury that is evident at the scene of 
the crash other than fatal or serious injuries. Examples of minor injuries include lumps on 
the head, abrasions, bruises, and minor lacerations (i.e., cuts on the skin surface with 
minimal bleeding and no exposure of deeper tissue/muscle). 

• Possible Injury (C)—A possible injury is any injury reported or claimed that is not a fatal, 
suspected serious, or suspected minor injury. Examples of possible injuries include a 
momentary loss of consciousness, claim of injury, limping, or complaint of pain or 
nausea. There are two ways to identify possible injuries: self-reported by the person 
involved in the crash or indicated by the person involved in the crash but no wounds or 
injuries are readily evident. 
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• No Apparent Injury (O)—No apparent injury is a situation where there is no reason to 
believe that the person involved in the crash received any bodily harm. There is no 
physical evidence of injury and the person does not report any change in normal function. 

Crash types often fall into one of the broader categories of crash types characterized by the 
number of vehicles involved: single-vehicle crashes, multiple-vehicle crashes, or total crashes 
(i.e., single- and multiple-vehicle crashes combined). Since systemic safety focuses on crash 
types scattered across the roadway network at low densities, attention is most typically paid to 
specific crash types that result in fatalities or severe injuries. The literature review found that 
models use many variations of crash-type definitions to identify contributing factors. Research 
also often distinguishes crash types by severity (e.g., all angle [ANG] crashes versus all KABC 
ANG crashes); therefore, crash-severity levels can be considered part of crash-type definitions. 
Example publications using different crash-type definitions under the three broadly defined crash 
types (i.e., single-vehicle crashes, multiple-vehicle crashes, and total crashes) are shown in  
table 1 through table 3. 

Table 1. Example publications addressing subsets of total crashes. 
Crash Type Reviewed Topical Literature 

All crashes AASHTO 2010; National Academy of Sciences 2003e, 2004a, 2004c, 2004f, 
2008b, 2009; FHWA 2004, 2008a, 2008b, 2009; Fink and Krammes 1995; 
Fitzpatrick et al. 2005; Harkey et al. 2008; Karlaftis and Golias 2002; Lord 
et al. 2011; Milton and Mannering 1996, 1998; Orner and Drakopoulos 2007; 
Shankar et al. 1995; Wang et al. 1998 

Severe crashes (KAB) AASHTO 2010; Preston et al. 2013a; National Academy of Sciences 2004d 
KABC crashes AASHTO 2010; AAA Foundation for Traffic Safety 2012; FHWA 2008b; 

Harkey et al. 2008; MnDOT 2011 
Nonfatal-injury crashes (ABC) FHWA 2008b; Harkey et al. 2008 
Young-driver crashes FHWA 2009; Goodwin et al. 2013; Preston et al. 2013a 
Older-driver crashes FHWA 2004, 2009; Goodwin et al. 2013; National Academy of Sciences 

2004c; Preston et al. 2013a 
Weather condition–related crashes Lord et al. 2011 
Weather condition–related crashes: 
wet-road crashes 

FHWA 2008a, 2009; Harkey et al. 2008; National Academy of Sciences 
2008b 

Weather condition–related crashes: 
dry-road crashes 

Harkey et al. 2008 

Weather condition–related crashes: 
snow-related crashes 

FHWA 2008a 

Light condition–related crashes Lord et al. 2011 
Light condition–related crashes: 
nighttime crashes 

FHWA 2008a, 2009; Harkey et al. 2008; National Academy of Sciences 
2004a 

Light condition–related crashes: 
nighttime-wet crashes 

FHWA 2009 

Light condition–related crashes: 
daytime crashes 

FHWA 2009 

Light condition–related crashes: 
daytime/nighttime ratio 

National Academy of Sciences 2004a 

Aggressive driving–related crashes Goodwin et al. 2013; Preston et al. 2013a 
Drug- and alcohol-related crashes Goodwin et al. 2013; Preston et al. 2013a 
Inattentive, distracted, asleep 
crashes 

Goodwin et al. 2013; National Academy of Sciences 2004g; Preston et al. 
2013a 
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Crash Type Reviewed Topical Literature 
Motorcycle crashes Goodwin et al. 2013; National Academy of Sciences 2008d; Preston et al. 

2013a 
Heavy-vehicle crashes FHWA 2008a; National Academy of Sciences 2004g; Miaou 1994; Preston 

et al. 2013a 
Intersection-related crashes AAA Foundation for Traffic Safety 2012; Fitzpatrick et al. 2005; Poch and 

Mannering 1996; Preston et al. 2013a 
Nonintersection-related crashes Fitzpatrick et al. 2005, 2008 
Work zone–related crashes Preston et al. 2013a 
Surface width–influence crashes Fitzpatrick et al. 2005 
Cross-median crashes Harkey et al. 2008 
Cross-median crashes: cross-median 
HEO crashes 

National Academy of Sciences 2008b 

Speed-related crashes FHWA 2008a, 2009; National Academy of Sciences 2009 
Speed-related crashes: speed-related 
daytime crashes 

FHWA 2009 

Speed-related crashes: speed-related 
nighttime crashes 

FHWA 2009 

Speed-related crashes: speed-related 
dry crashes 

FHWA 2009 

Speed-related crashes: speed-related 
wet crashes 

FHWA 2009 

Emergency-vehicle crashes National Academy of Sciences 2004f; FHWA 2009 
Red-light-running crashes National Academy of Sciences 2004f; FHWA 2004 
Lane-change crashes National Academy of Sciences 2004f 
Wrong-way crashes National Academy of Sciences 2008b 

HEO = head on. 

Table 2. Example publications addressing subsets of single-vehicle crashes. 
Crash Type Reviewed Topical Literature 

All single-vehicle crashes AASHTO 2010; Harkey et al. 2008; Zegeer et al. 1987 
Roadway-departure/ROR crashes AASHTO 2010; AAA Foundation for Traffic Safety 2012; Cato et al. 2013; 

FHWA 2008a, 2009; Hallmark et al. 2006; Knapp et al. 2014; National 
Academy of Sciences 2003e, 2003f, 2004b, 2008b, 2009; Lee and Nam 
2003; Liu and Ye 2011; Lord et al. 2011; MnDOT 2011; Orner and 
Drakopoulos 2007; Patel et al. 2007; Preston et al. 2013a 

Fatal ROR crashes AASHTO 2010; Liu and Subramanian 2009; Patel et al. 2007 
Collision-with-animal crashes AASHTO 2010; FHWA 2008a 
Overturn crashes AASHTO 2010; FHWA 2008a, 2009; Shankar et al. 1995 
Collision-with-parked-vehicle 
crashes 

AASHTO 2010; National Academy of Sciences 2004f; FHWA 2008a; 
Shankar et al. 1995 

Collision-with-fixed-object crashes AASHTO 2010; FHWA 2008a, 2009; Shankar et al. 1995 
Collision-with-fixed-object crashes: 
collision-with-tree crashes 

National Academy of Sciences 2003c 

Collision-with-other-object crashes AASHTO 2010 
Noncollision AASHTO 2010 
Wet-road crashes Harkey et al. 2008 
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Table 3. Example publications addressing subsets of multiple-vehicle crashes. 
Total Multiple-Vehicle Crashes Reviewed Topical Literature 

All multivehicle crashes AASHTO 2010; National Academy of Sciences 2004f; FHWA 2009 
ANG crashes AASHTO 2010; National Academy of Sciences 2003e, 2004f, 2009; Poch 

and Mannering 1996 
ANG crashes: ANG-N crashes Harkey et al. 2008 
Right-ANG crashes National Academy of Sciences 2004f; FHWA 2004, 2008a, 2009; Harkey 

et al. 2008; Preston et al. 2013a 
Right-ANG crashes: wet-road right-
ANG crashes 

Harkey et al. 2008 

HEO crashes AASHTO 2010; AAA Foundation for Traffic Safety 2012; FHWA 2008a, 
2009; Preston et al. 2013a 

Rear-end crashes AASHTO 2010; National Academy of Sciences 2003e, 2004f; FHWA 2004, 
2008a; Harkey et al. 2008; Poch and Mannering 1996; Preston et al. 2013a; 
Shankar et al. 1995 

Rear-end crashes: wet-road rear-end 
crashes 

Harkey et al. 2008 

Turning crashes FHWA 2008a, 2009; National Academy of Sciences 2003e, 2009; Poch and 
Mannering 1996; Preston et al. 2013a 

Turning crashes: left-turn crashes National Academy of Sciences 2004f; FHWA 2004, 2008a, 2009; Harkey 
et al. 2008 

Turning crashes: right-turn crashes FHWA 2008a, 2009 
Sideswipe crashes AASHTO 2010; National Academy of Sciences 2004f; FHWA 2004, 2008a, 

2009; National Acadmey of Science 2003e; Preston et al. 2013a; Shankar 
et al. 1995 

Sideswipe crashes: same-direction 
sideswipe crashes 

Zegeer et al. 1987 

Sideswipe crashes: opposite-
direction sideswipe crashes 

Zegeer et al. 1987 

Nondriveway Crashes AASHTO 2010 
Driveway crashes AASHTO 2010; Fitzpatrick et al. 2005 
Vehicle–pedestrian crashes AASHTO 2010; AAA Foundation for Traffic Safety 2012; National 

Academy of Sciences 2004d, 2004f; FHWA 2004, 2008a, 2008b, 2009; 
Goodwin et al. 2013; Preston et al. 2013a 

Vehicle–pedestrian crashes: 
crossing-roadway crashes 

AAA Foundation for Traffic Safety 2014; National Academy of Sciences 
2004d 

Vehicle–pedestrian crashes: 
walking-along-roadway crashes 

AAA Foundation for Traffic Safety 2012; FHWA 2008a, 2008b; National 
Academy of Sciences 2004d 

Vehicle–bicycle crashes AASHTO 2010; AAA Foundation for Traffic Safety 2012; National 
Academy of Sciences 2004f, 2008a; FHWA 2009; Goodwin et al. 2013; 
Preston et al. 2013a 

Vehicle–bicycle crashes: crossing-
roadway crashes 

AAA Foundation for Traffic Safety 2012 

Vehicle–bicycle crashes: biking-
along-roadway crashes 

AAA Foundation for Traffic Safety 2012 

Vehicle–train crashes Preston et al. 2013a 
HEO = head on. 

Researchers more commonly analyze KA crashes separately from minor injuries or 
property-damage-only (PDO) crashes because the reliability of the data is greatest for 
higher-severity crashes (KA or KAB). As crash severity decreases, the reliability of reporting 
decreases. 
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Underreporting increases as crash severity decreases, and it is generally accepted that fewer than 
5 percent of K crashes are unreported while more than 50 percent of PDO crashes are unreported. 
Underreported data will produce biased estimates in crash-frequency and crash-severity models. 
Additionally, this distribution of underreporting leads to overrepresentation of crashes with 
higher severity and underrepresentation of crashes with lower severity. This fact, along with other 
factors like the higher economic and social costs of KA crashes and the purpose of the Highway 
Safety Improvement Program (i.e., to reduce K and A crashes), leads researchers and 
practitioners to focus on reducing KA crashes. 

Conversely, considering only K, KA, and KB crashes for specific crash types leads to very small 
sample sizes. Disaggregation of analysis to this level may lead to analyses that do not yield 
contributing factors associated with specific crash types and severities. Inclusion of all severities 
or combining crash types may affect the underlying relationships between contributing factors 
and severe crash outcomes but help increase the confidence in statistical associations between 
contributing factors and crash outcomes. Based on the strengths and limitations associated with 
different levels of disaggregation, this research focuses on crash types well represented within the 
three databases. 

Facility Types 

Researchers present facility types in several different formats. Most commonly, researchers use 
the HSM definitions for facility types, which include the following (AASHTO 2010; AAA 
Foundation for Traffic Safety 2012; FHWA 2004, 2008a, 2008b, 2009, Fink and Krammes 1995; 
Fitzpatrick et al. 2005, 2008; Goodwin et al. 2013; Hallmark et al. 2006; Harkey et al. 2008; 
Karlaftis and Golias 2002; Lord et al. 2011; Miaou 1994; National Academy of Sciences 2003c, 
2003e, 2003f, 2004a, 2004b, 2004c, 2004d, 2004f, 2004g, 2008a, 2008b, 2008d, 2009; Patel et al. 
2007; Shankar et al. 1995; Wang et al. 1998; Zegeer et al. 1987): 

• Rural two-lane two-way roads: 
o Segments. 
o Unsignalized intersections. 
o Signalized intersections. 

• Rural multilane highways: 
o Segments. 
o Unsignalized intersections. 
o Signalized intersections. 

• Urban and suburban arterials: 
o Segments. 
o Unsignalized intersections. 
o Signalized intersections. 

• Rural and urban freeways: 
o Segments. 
o Ramp/collector–distributor segments. 
o Crossroad ramp terminals. 
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Basic facility types can be further subdivided by number of lanes and median type for all but 
rural two-lane two-way roads and by number of approach legs for intersections. Often, literature 
notes that contributing factors are applicable to specific facility types, such as rural and urban 
unsignalized intersections, but does not differentiate for which specific facility types each 
contributing factor is appropriate. If researchers consider the contributing factors of specific 
facility types but report them in a more generalized manner, then this creates potential for users to 
consider inappropriate contributing factors or apply incorrect countermeasures. 

Several resources do not discuss when the authors use cross-sectional data for segments and 
intersections across different facility types (Lee and Nam 2003; Liu and Subramanian 2009; 
Liu and Ye 2011; Orner and Drakopoulos 2007; Poch and Mannering 1996; Preston et al. 2013a). 
These results were generalized for all facility types, excluding ramps and freeways unless 
specifically identified as being included. In these cases, contributing factors were reported for all 
facility types included in the data, with facility type–level indicators included in the model 
(i.e., number of lanes, area type, median presence and width, intersection approaches, and traffic 
control type). When larger amounts of data are available, identifying contributing factors at this 
level can be effectively accomplished by considering interactions between contributing factors 
and facility type–level information (e.g., an interaction between shoulder width and number of 
lanes will identify facilities where shoulder width has the greatest impact on safety by number of 
lanes). 

Two resources identified facility types as paved or unpaved roads (Calvert et al. 1999; Knapp 
et al. 2014). These resources identified contributing factors, with specific factors identified for 
unpaved roadways versus paved roadways. In all cases, the roadways were rural two-lane 
two-way roads. Researchers can consider unpaved roadways as an additional facility type or a 
subset of rural two-lane roads. 

Alternatively, two resources disaggregated the appropriate facilities at levels further than the 
HSM (Cato et al. 2013; MnDOT 2011). These authors considered contributing factors for 
horizontal curves and tangent segments separately and identified contributing factors in relation 
to bridge location. At this level, contributing factors can be considered more fully; however, 
crash data become sparser, resulting in more zero-crash sites in the database. 

Milton and Mannering (1996, 1998) considered facility types by functional classification in 
cross-sectional regression models. In their research, roadway-segment models considered 
contributing factors for principal arterials, minor arterials, and all collectors. Other research by 
Shankar et al. (1995) considered only interstate segments, which are also a level of functional 
classification. Shankar et al.’s definition of facility type only considered segments and excluded 
intersections and interchanges. Since this research used cross-sectional models, HSM-defining 
characteristics were included as predictors in the models (e.g., number of lanes). However, this 
definition could become more cumbersome when considering intersections. In many cases, the 
intersecting roadways would consist of roadways with differing functional classifications, 
requiring contributing factors to be considered for several more levels of intersection types. 

While differing facility-type definitions were identified in the literature, it is clear that the HSM 
definitions are most commonly used. As agencies are already aligning their data by these 
definitions for network screening, the HSM definitions are the most practical for use in this 
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current project, possibly with an additional level of disaggregation of segments into horizontal 
curves and tangent segments, as outlined in Cato et al. (2013) and MnDOT (2011). The HSM 
definitions provide the most practical level of disaggregation for identifying appropriate 
contributing factors. 

Contributing Roadway Factors 

This section summarizes contributing factors and safety countermeasures identified in the 
literature. Contributing factors are characteristics of roadway segments and intersections that are 
associated with an increase or decrease in crash frequency or severity. Safety countermeasures or 
treatments are applied by agencies to roadway segments or intersections with the specific 
intention of reducing crash frequency or severity. 

Table 4 summarizes roadway factors and table 5 summarizes safety countermeasures that 
published studies have identified as influencing crash frequencies and severities on the noted 
facility types for segments. With the intent of providing a high-level summary of possible 
influential factors, the tables do not distinguish findings by crash type or direction of safety 
effects (i.e., increases or decreases in crashes). The “Prevalence” column in each table indicates 
the prevalence of the roadway factors or countermeasures in the literature as being low, medium, 
or high. Based on the resources examined, these categories are defined as follows: 

• Low = appeared in one to three resources. 
• Medium = appeared in four to six resources. 
• High = appeared in seven or more resources. 

Roadway factors or countermeasures identified as having a higher prevalence are those that are 
known to be related to crash frequency or severity. These factors should be prioritized for 
inclusion in crash-frequency or -severity models. For instance, annual average daily traffic 
(AADT) was found to be the most commonly considered roadway factor across all resources, 
leading AADT to be labeled as high prevalence. Other factors were only found in one resource 
(e.g., sign-support density) due to the lack of readily available data and difficulty collecting data 
for a large number of sites, leading these factors to be labeled as low prevalence. 

Table 4. Prevalence of roadway factors by facility type for segments. 

Factor Prevalence 
Rural 

2-Lane 
Rural 

Multilane 
Urban 
Street Freeway Ramp 

AADT High ● ● ● ● ● 
Peak hour Low ● ● ● ● — 
Area type High — — — ● ● 
Number of lanes High — ● ● ● ● 
Lane width High ● ● ● ● ● 
Shoulder width High ● ● ● ● ● 
Shoulder type High ● ● ● ● — 
Shoulder location (e.g., inside) Medium — — — ● ● 
Presence of surfaced shoulder Medium ● — — — — 
Presence of combination-
surface/stabilized shoulder 

Low ● — — — — 

Horizontal curve density High ● ● ● ● ● 
Driveway type Low ● ● ● ● — 
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Factor Prevalence 
Rural 

2-Lane 
Rural 

Multilane 
Urban 
Street Freeway Ramp 

Driveway density High ● ● ● ● — 
Presence of horizontal curve  High ● ● ● ● ● 
Degree of curvature/radius High ● ● ● ● ● 
Length of horizontal curve High ● ● ● ● ● 
Horizontal curve-approach 
tangent length 

Low ● ● ● — — 

Superelevation rate Medium ● ● ● ● — 
Presence of spiral transition Low ● — — — — 
Posted speed limit High ● ● ● ● — 
Lateral-clearance distance High ●  ● ● — 
Side-slope rating High ● ● ●  — 
Pavement-surface condition 
(friction) 

High ● ● ● ● — 

Combination horizontal and 
vertical alignment (visual trap) 

Low ● ● ● ● — 

Pavement-surface condition 
(weather) 

Low ● ● ● ● — 

Presence of intersection Low ● ● ●  — 
Proportion of commercial 
vehicles in the traffic stream 

Medium ● ● ● ● — 

Topography Low ● ● ● ● — 
Roadway-edge quality Medium ● ● ● ● — 
Speed differential between 
horizontal curve and tangent 

Low ● ● ● ● — 

Roadway gradient High ● ● ● ● — 
Median width High — ● ● ● — 
Median type High — ● ● ● — 
Hazard rating of roadsides Medium ● ● ● ● — 
Adjacent land use Low ● ● ● ● — 
Location and presence of bus 
stops 

Low ● ● ● ● — 

Presence of on-street parking Low — — ● — — 
Type of on-street parking Low — — ● — — 
Roadside fixed-object density Low — — ● — — 
Distance to shoulder barrier Low ● ● ● ● ● 
Speed-change lane presence Low — — — ● ● 
Speed-change lane type Low — — — ● — 
Distance to inside barrier Low — — — ● ● 
Length of ramp entrance Low — — — ● — 
Length of ramp exit Low — — — ● — 
Hours exceeding a threshold 
(1,000 hr for freeways; 2,500 hr 
for others) 

Low ● ● ● ● — 

Ramp side (e.g., right side) Low — — — ● — 
Presence of type B weaving 
section  

Low — — — ● ● 

Length of type B weaving section  Low — — — ● ● 
Ramp type Low — — — — ● 
Mean travel speed Medium ● ● ● ● — 
Bridge width Low ● ● ● ● — 
Presence of vertical curve  Medium ● ● ● ● ● 
Vertical-curve rate Low ● ● ● ● ● 
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Factor Prevalence 
Rural 

2-Lane 
Rural 

Multilane 
Urban 
Street Freeway Ramp 

Length of vertical curve  Low ● ● ● — — 
Median-barrier type/condition Low — ● ● ● ● 
Vertical-curve density Low ● ● ● — — 
Available sight distance Medium ● ● ● ● ● 
Edgeline-marking width Low ● ● ● ● — 
Ditch design Low ● — — — — 
Outside-barrier type/condition Medium ● ● ● ● ● 
Intersection density Medium ● ● — — — 
Functional classification Low ● ● — — — 
Pavement width Low ● ● — — — 
Season Low ● ● ● — — 
Year Low ● ● ● ● — 
Catch-basin density Low ● ● ● — — 
Culvert density Low ● ● ● — — 
Presence of fence/wall Low ● ● ● — — 
Sign-support density Low ● ● ● — — 
Utility-pole density Low ● ● ● — — 
Pavement condition High ● ● ● ● ● 
Pavement type Low ● — — — — 
Monthly precipitation 
(i.e., rain/snow) 

Low — — — ● — 

Letter height of roadway signs Low ● ● ● — — 
Presence of variable message 
signs 

Low — — — ● — 

●Factor that influenced crash frequency and severity on the segment (as identified in a published study). 
—No data available. 

Table 5. Prevalence of countermeasures by facility type for segments. 

Factor Prevalence 
Rural 

2-Lane 
Rural 

Multilane 
Urban 
Street Freeway Ramp 

Centerline markings Low ● ● ● ● — 
Edge-line markings Medium ● ● ● ● — 
Advisory signs Medium ● ● ● ● — 
Chevrons Medium ● ● ● ● — 
Post-mounted delineators High ● ● ● ● — 
Flashing beacon Low ● — — — — 
Reflective-barrier delineation Low ● — — — — 
Profile thermoplastic markings Low ● — — — — 
Dynamic-curve warning system Low ● — ● — — 
Speed-limit-advisory marking 
lane 

Low ● —  — — 

Lighting High ● ● ● ● — 
SafetyEdge℠ Low ● — — — — 
Curve-advance marking Low ● — — — — 
Optical speed bars Low ● — — — — 
Centerline rumble strips High ● ● ● ● — 
Shoulder rumble strips High ● ● ● ● — 
Raised pavement markings Low ● ● ● ● — 
Outside barrier High ● — — ● — 
Presence of median High — ● ● ● — 
Automated speed enforcement Medium ● ● ● ● — 
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Factor Prevalence 
Rural 

2-Lane 
Rural 

Multilane 
Urban 
Street Freeway Ramp 

Passing lane Medium ● — — — — 
Short four-lane section Low ● — — — — 
Two-way left-turn lane Low ● — ● — — 
Median barrier  Low — — — ● — 
Lane drop/add Low — — — — ● 
Raised median at crosswalk Low — — ● — — 
Presence of sidewalk Low ● ● — — — 
Side friction Low ● ● — — — 
Crosswalk Low ● ● — — — 
Bicycle lane Low ● ● — — — 
Impact attenuators Low ● ● ● ● — 
Presence of bridge Low ● ● ● ● — 
Truck escape ramp Low ● ● ● ● — 
Access control Low — ● — — — 
Object delineation in clear zone Medium ● ● ● — — 
Truck prohibition Low ● — ● — — 
Anti-icing system Low ● — ● — — 
Break-away devices Low ● — ● — — 
Advance guide signs and street 
names 

Low ● ● ● — — 

Pedestrian-crossing warning Low ● ● ● — — 
Traffic calming Low ● ● ● — — 
Interactive truck-rollover signing Low ● ● ● ● ● 
Truck-related posted speed limit Low — — — ● — 
Variable speed limit Low ● ● ● ● — 
Active speed warning Low ● ● ● ● — 
Reduced-traction warning sign Low ● ● ● — — 

●Factor that influenced crash frequency and severity on the segment (as identified in a published study). 
—No data available. 

Table 6 summarizes roadway factors and table 7 summarizes countermeasures that published 
studies have identified as influencing crash frequencies and severities on the noted facility types 
at signalized and unsignalized intersections. With the intent of providing a high-level summary of 
possible influential factors, the tables do not distinguish findings by crash type or direction of 
safety effects. The prevalence of the roadway factors or countermeasures in the literature is used 
in the same way as the segment tables. 

Table 6. Prevalence of roadway factors by facility type for intersections. 
Factor Prevalence R2U R2S RMU RMS UU US 

Major AADT High ● ● ● ● ● ● 
Minor AADT High ● ● ● ● ● ● 
Left-turn volume Low — — — — ● ● 
Right-turn volume Low — — — — ● ● 
Total opposing approach volume Low — — — — ● ● 
AADT ratio Low ● ● — — — — 
Number of approaches High ● ● ● ● ● ● 
Number of approach lanes Medium — — ● ● ● ● 
Number of signal heads Low — ● — ● — ● 
Signal head–mount location Low — ● — ● — ● 
Signal timing/phases Medium — ● — ● — ● 
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Factor Prevalence R2U R2S RMU RMS UU US 
Signal-head size Low — — — — — ● 
Yellow interval length Low — ● — ● — ● 
Intersection sight distance High ● ● ● ● ● ● 
Pedestrian-crossing distance Low ● ● ● ● ● ● 
Pedestrian signal–head type Low — ● — ● — ● 
Skew ANG High ● ● ● ● ● ● 
Proximity to horizontal and vertical curves Low ● ● ● ● ● ● 
Proximity to at-grade railroad crossing Low ● ● ● ● ● ● 
Traffic control type (e.g., all-way stop) High ● —  ● —  ● —  
Presence of commercial development Low ● ● ● ● ● ● 
Maximum number of lanes crossed by 
pedestrian in maneuver 

Low — — — — ● ● 

Number of bus stops within 1,000 ft Low — — — — — ● 
Number of schools within 1,000 ft Low — — — — — ● 
Number of alcohol-sales establishments 
with 1,000 ft 

Low — — — — — ● 

Left turn–lane length Low ● ● ● ● ● ● 
Right turn–lane length Low ● ● ● ● ● ● 
Shoulder width Low ● ● ● ● — — 
Pavement-surface condition (friction) Medium ● ● ● ● ● ● 
Median type Low — — ● ● ● ● 
Presence of parking near intersection Low ● ● ● ● ● ● 
Minor route access density Low ● ● ● ● — — 
Functional classification Low — — — — ● ● 
Approach posted speed limit Low — — — — ● ● 
Opposing approach posted speed limit Low — — — — ● ● 
Intersection approach gradient Low — — — — ● ● 
Roadway drainage Low — ● — ● — ● 
Signal hardware located in clear zone Low — ● — ● — ● 
●Factor that influenced crash frequency and severity on the segment (as identified in a published study). 
—No data available. 
R2U = rural two-lane unsignalized intersection; R2S = rural two-lane signalized intersection; RMU = rural multilane 
unsignalized intersection; RMS = rural multilane signalized intersection; UU = urban unsignalized intersection; 
US = urban signalized intersection. 

Table 7. Prevalence of countermeasures by facility type for intersections. 
Factor Prevalence R2U R2S RMU RMS UU US 

Advance intersection warning Low ● ● ● ● ● ● 
Back plates Low — ● — ● — ● 
Retroreflective sheeting on back plate Low — ● — ● — ● 
Left-turn lane High ● ● ● ● ● ● 
Right-turn lane High ● ● ● ● ● ● 
Presence of crosswalk Low ● ● ● ● ● ● 
Intersection lighting High ● ● ● ● ● ● 
Right turn on red prohibition Medium — — — — — ● 
Red-light camera Medium — — — — — ● 
Automated speed enforcement Low — — — — — ● 
Protected left-turn phase High — ● — ● — ● 
Protected/permissive left-turn phase Low — ● — ● — ● 
Right-turn channelization Low — — ● ● ● ● 
Left-turn channelization Low — — ● ● ● ● 
Exclusive pedestrian phasing Low — ● — ● — ● 
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Factor Prevalence R2U R2S RMU RMS UU US 
Emergency pre-emption Low — ● — ● — ● 
Lead-pedestrian interval Low — ● — ● — ● 
Lead-bicycle interval Low — ● — ● — ● 
Actuated signal Low — ● — ● — ● 
Signal coordination Low — ● — ● — ● 
Advanced dilemma-zone detection Low — ● — ● — — 
Flash mode Low — ● — ● — ● 
Stop-sign size Low ● — ● — ● — 
Pedestrian signing Low ● ● ● ● ● ● 
Overhead lane-use signs Low ● ● ● ● ● ● 
Raised pavement marker Low ● ● ● ● ● ● 
Stop bars Low ● — ● — ● — 
Directional median opening Low — ● — ● — ● 
Double left-turn lane Low — ● — ● — ● 
Left turn–painted separation Low — ● — ● — ● 
Presence of median Low — — ● ● ● ● 
Raised median crosswalk Low ● — ● — ● — 
Presence of raised island Low ● — ● — ● — 
Splitter island on minor approach Low ● — ● — ● — 
Bypass lane  Low ● ● ● ● ● ● 
Double stop sign Low ● — ● — ● — 
Flashing beacons Low ● — ● — ● — 
Stop-ahead pavement markings Low ● — ● — ● — 
Transverse rumble strips Low ● ● ● ● ● ● 
Bicycle lane Low ● ● ● ● ● ● 
Contraflow bicycle lane Low ● ● ● ● ● ● 
No-left-turn sign Medium ● ● ● ● ● ● 
No-U-turn sign Low ● ● ● ● ● ● 
Pedestrian overpass/underpass Low — — — — ● ● 
Presence of sidewalk Medium ● ● ● ● ● ● 
Offset left-turn lanes Low — ● — ● ● ● 
Extended edgelines Low ● — ● — ● — 
Driveway closure Low ● — ● — ● — 
Acceleration lane Low ● — ● — ● — 
Offset T versus four-leg intersection Low ● — ● — ● — 
ICWS Low ● — ● — ● — 
Roadside markers Low ● — ● — ● — 
Clearance interval Medium — ● — ● — ● 
Pedestrian signals Low ● ● ● ● ● ● 
Pedestrian crossing warning Low ● ● ● ● ● ● 
Restricted turning maneuvers Low — ● — ● — ● 
Access management near intersection Low — ● — ● — ● 
Bicycle-detecting sensor Low — ● — ● — ● 

●Factor that influenced crash frequency and severity on the segment (as identified in a published study). 
—No data available. 
R2U = rural two-lane unsignalized intersection; R2S = rural two-lane signalized intersection; RMU = rural multilane 
unsignalized intersection; RMS = rural multilane signalized intersection; UU = urban unsignalized intersection; 
US = urban signalized intersection; ICWS = intersection curve warning sign.  
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Datasets 

Nearly all resources identified in this literature review used databases that were developed 
specifically for their research, including field data collections or State crash, traffic, and roadway 
inventory data. The databases were developed to suit the needs of the research at hand, and a 
limited set of predictors was considered in the developed models. As such, these databases were 
not usable for this study. However, as part of the DCMF program, States supplied information on 
their data sources and availability via a DCMF Needs Assessment. In addition to these data, the 
research team identified the following databases for further consideration for identifying focus 
crash types, facility types, and contributing roadway factors: 

• Crash Injury Research and Engineering Network (NHTSA 2018d). 
• Crashworthiness Data System (NHTSA 2018c). 
• Fatality Analysis Reporting System (FARS) (NHTSA 2018a). 
• Federal Transit Administration National Transit Database (FTA 2018). 
• General Estimates System (NHTSA 2018b). 
• Highway Safety Information System (HSIS) (FHWA 2018c). 
• Motor Carriers Management Information System (FMCSA 2016). 
• National EMS Information System (NEMSIS Technical Assistance Center 2018). 
• National Motor Vehicle Crash Causation Study (NHTSA 2008). 
• National Park Service Service‐Wide Traffic Accident Reporting System.1 
• Second Strategic Highway Research Program (SHRP2) Naturalistic Driving and 

Roadway Databases (Virginia Tech Transportation Institute 2018). 

Chapter 4 and chapter 5 describe the ultimate selection of data sources for this project.  

Methodologies 

The previous sections of this chapter summarized roadway factors and countermeasures expected 
to be associated with crash frequency and severity for various facility types. The previous 
sections also identified commonly used data resources upon which these findings were based. 
This section summarizes relevant statistical methods that could be employed to the 
aforementioned data resources (or others) to identify contributing roadway factors for FCFTs. 
That is, this section provides an overview of statistical methods that can be used to estimate and 
quantify the uncertainty about factors that either increase or decrease the frequency and/or 
severity of various crash types. 

In determining which statistical method to use to identify contributing roadway factors for 
FCFTs, it is imperative that the selected method be appropriate for the type of data under 
consideration. For example, researchers may use generalized linear modeling to identify roadway 
factors for data on the number of crashes that occur in a certain section of a highway (e.g., count 
data), but this method may not be applicable when trying to analyze the time between crashes on 
the same section of the highway. The chosen statistical method must match the selected data to 
identify the contributing roadway factor. 

 
1This unpublished dataset is available through the National Park Service. 
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The following sections detail the selected methods many researchers have used to identify factors 
that increase or decrease the potential for future crashes of various crash types. Each section 
includes a high-level overview of each method, along with the type of data to which the method 
would apply, and a list of the most popular textbooks for using the proposed method. 

Normal Linear Regression Models 

Normal linear regression models (commonly referred to as “linear models”) seek to quantify the 
linear relationship between or among an outcome (often called a response, dependent variable, or 
output) and one or more other measurements (often called predictors, independent variables, or 
inputs). In other words, the goal of a normal regression model is to estimate the change in an 
output that results from changing one or more of the input variables. By way of example, a 
normal regression model would estimate the change in friction on a road surface due to a change 
in surface temperature. Relevant results from a normal regression analysis include but are not 
limited to a measure, which represents the probability of a Type Ⅰ error (e.g., rejecting a null 
hypothesis when it is actually true, also known as a false positive), of whether each input variable 
has a statistically significant effect on the output variable in the form of p-values and a summary 
of the estimated effect of each input variable on the output variable. 

Certain assumptions that are used to estimate the effect of each input variable on the output 
variable restrict the applicability of linear models. As the name implies, linear models are only 
able to estimate linear relationships between inputs (predictors) and the output (the response) and 
any transformations of the input and output variables. Admittedly, many relationships are more 
complicated (i.e., nonlinear), and linear models could fail to recognize such relationships. 

Normal linear models are only applicable to continuous outputs. A continuous variable is a 
variable that can take any value (e.g., rational and irrational numbers) on the real number line. 
Linear regression would not apply, for example, to count data because a count has to be an 
integer (e.g., 0, 1, 2…). 

Linear regression is a well-established method and taught as a core course in many statistics 
department. The most popular introductory texts to linear regression include the following: 

• Applied Linear Regression by S. Weisberg (2014). 
• Regression Analysis by Example by S. Chatterjee and A. S. Hadi (2012). 
• Linear Models with R by J. J. Faraway (2015). 
• Introduction to Linear Regression Analysis by D. C. Montgomery, E. A. Peck, and 

G. G. Vining (2012). 

The Faraway (2015) and Montgomery et al. (2012) books are particularly popular due to their use 
of R programming language and statistical analysis software (SAS). 

Generalized Linear Models 

As previously mentioned in the discussion about normal linear regression models, one of the 
drawbacks of such models is their reliance on continuous outputs. For many applications, 
particularly for traffic-safety data, the outcome of interest is not continuous. Generalized linear 
models (GLMs) are an extension of linear models by use of noncontinuous data. GLMs are 
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similar to normal linear models in that GLM results include a measure of whether each input 
variable has a significant effect on the output variable in the form of p-values and a summary of 
the estimated effect of each input variable on the output variable. However, GLMs explicitly take 
into account the noncontinuous nature of the outcome variable to estimate these effects. 

A few specific GLMs that are of particular applicability for traffic-safety data are Poisson, 
negative binomial (NB) regression, and logistic models. Poisson and NB regression models are 
specifically used to estimate effects of a particular input variable on a count output variable. For 
example, Poisson or NB regression models can be used to estimate effects of including a high 
occupancy–vehicle lane on the number of crashes along a particular stretch of highway. 
Estimated effects from Poisson or NB regression models are interpreted as the effect of a change 
in the input variable on the expected number of outcomes. 

Binary logistic regression models are used to estimate the effect of input variables on a 
0/1 outcome variable. A 0/1 outcome variable is any variable that either occurred (typically 
denoted as “1”) or did not occur (typically denoted as “0”). For example, a binary logistic 
regression model could be used to estimate the effect of a 5-ft-wide shoulder on the occurrence of 
one or more ROR crashes. Estimated effects from a binary logistic regression model are 
interpreted as the effect of an input variable on the probability of the outcome variable occurring 
(e.g., the probability of one or more ROR crashes). Multinomial logistic regression models 
extend this concept to situations where the response variable has more than two outcomes. 
Similar to normal linear regression models, GLMs assume that the relationship between each 
input variable and the output variable is linear. While the assumption of linearity is often a good 
approximation, nonlinear relationships are often more realistic (but also more difficult to model 
and interpret). 

GLMs inherently respect the noncontinuous nature of an outcome variable, but interpreting the 
estimated effects from a GLM can be more complicated than estimating those from a normal 
linear regression model. For example, in a logistic regression model, the effects displayed by 
SAS are typically on a log–odds ratio scale; that is, the displayed effects can be interpreted as the 
effect of an input variable on the log–odds ratio of an outcome variable. Therefore, special care 
must be given when considering the estimated effects in a GLM framework. If necessary, the 
scale of the estimated effects can be transformed back to the original scale of the data, but this 
back-transformation is typically not the default for most SAS packages. 

Approachable, high-level textbooks for GLMs include the following: 

• Extending the Linear Model with R by J. J. Faraway (2006). 
• An Introduction to Generalized Linear Models by A. J. Dobson and A. G. Barnett (2008). 
• Chapter 12 of Applied Linear Regression by S. Weisberg (2014). 
• Chapter 4 of Introduction to Statistical Learning and Data Mining by G. James, 

D. Witten, T. Hastie, and R. Tibshirani (2013). 

Chapter 4 of The Elements of Statistical Learning and Data Mining by T. Hastie, R. Tibshirani, 
and J. Friedman (2009) and Generalized Linear Models by P. McCullagh and J. A. Nelder (1994) 
are more theoretically based texts. 
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Longitudinal Analyses 

Longitudinal data are repeated measurements collected on a single entity over time. For example, 
data on the number of crashes along a given road over time would constitute longitudinal data for 
that specific road. The goal of a longitudinal analysis is to relate input variables to changes in the 
output over time. For example, a longitudinal analysis could infer the effect of increasing the 
width of a rural road lane from 9 to 12 ft on the number of head-on (HEO) crashes along the road. 

The primary advantage of a longitudinal analysis is that it allows unit-specific inference. For 
instance, increasing the lane width from 9 to 12 ft might have no effect on the number of HEO 
crashes for some rural roads but might significantly decrease the number of HEO crashes for 
others. Hence, measuring the same unit repeatedly over time allows for inference specific to the 
unit. 

Standard textbooks for longitudinal analysis include the following: 

• Applied Longitudinal Analysis by G. M. Fitzmaurice, N. M. Laird, and J. H. Ware (2011). 
This text includes examples of how to use SAS for longitudinal analyses. 

• Longitudinal Data Analysis by D. Hedeker and R. D. Gibbons (2006). 

Additionally, the following books have discussion on the subject: 

• Extending the Linear Model with R by J. J. Faraway (2006). 
• An Introduction to Generalized Linear Models by A. J. Dobson and A. G. Barnett (2008). 

Survival Analysis 

Survival analysis, also referred to as hazard analysis, is a branch of statistics primarily concerned 
with time-to-event (TTE) data. TTE data are collected on the amount of time passed until a 
certain event occurs (e.g., the time between consecutive crashes on the same section of highway). 
The focus of many survival analyses is the relation of input variables to the probability of an 
event occurring given that the event has not yet occurred. For example, a survival analysis would 
seek to relate the presence of a median to the probability of a crash occurring between 5 and 
6 p.m. given that a crash has not previously occurred that day. 

Reasons why TTE data are not amenable to traditional statistical analysis (e.g., normal or GLMs) 
include the following: 

• TTE data are strictly positive. 
• TTE data are typically described by nonsymmetric and highly skewed distributions. 
• TTE data can often be censored. 

Censored data occur when an event is not observed in the timeframe of the study and, hence, the 
TTE is unknown. Much of survival analysis is concerned with appropriately accounting for such 
data characteristics in a statistical analysis.  
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Common textbooks for introductory courses in survival analysis include the following: 

• Modelling Survival Data in Medical Research by D. Collett (2003). 
• Survival Analysis Using SAS: A Practice Guide by P. D. Allison (2010). 

The text by P. D. Allison (2010) is more applied in nature, but both texts detail how to use SAS 
to perform analyses. Another approachable text is Survival Analysis: A Self-Learning Text by 
D. G. Kleinbaum and M. Klein (2012). Additionally, other books (e.g., An Introduction to 
Generalized Linear Models by A. J. Dobson and A. G. Barnett [2008]) have individual chapters 
dedicated to survival analysis. 

Spatial Modeling 

Spatial modeling, or spatial statistics, is a branch of statistics that analyzes data collected 
regarding a specific space and produces information about the spatial dimensions of the data 
(known as spatial data). Some examples of spatial data include the following: 

• Weather measurements taken at different stations across the United States. 
• Counts of flu cases observed in each county within a State. 
• The number of crashes observed on adjacent sections of a highway. 

Researchers collect each of these example datasets at various spatial locations (e.g., a weather 
station or section of highway) and use spatial methods for analysis. 

The primary concern of spatial statistics is accounting for and exploiting correlations with data 
collections at nearby locations. For example, the weather in Raleigh, NC, is expected to be 
similar to (or correlated with) weather in Durham, NC, due to their proximity of approximately 
25 mi. Similarly, the effect of a random, unmeasured event that occurs in Raleigh could 
“spillover” to nearby Durham. Accounting for and exploiting the spatial correlation in such data 
leads to more appropriate and correct statistical inferences and the ability to predict at unobserved 
locations. 

Common tools to analyze spatial data include Gaussian process regression, autoregressive 
models, and point processes. Because these tools are most commonly used within the previously 
discussed methods (e.g., as part of a normal regression model or GLM), they are considered an 
extension of these methods when used with data collected over space. 

Approachable textbooks in spatial statistics include the following: 

• Applied Spatial Statistics for Public Health Data by L. A. Waller and C. A. Gotway 
(2004). 

• Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology by A. B. 
Lawson (2013). 
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More theoretical, low-level texts include the following: 

• Statistics for Spatial Data by N. A. C. Cressie (1993). 
• Statistics for Spatio-temporal Data by N. A. C. Cressie and C. K. Wikle (2011). 
• Hierarchical Modeling and Analysis of Spatial Data by S. Banerjee, B. P. Carlin, and 

A. E. Gelfand (2015). 

Bayesian Modeling 

Bayesian modeling is not a single method, per se, but more of a general philosophy toward any 
statistical analysis. Unlike traditional statistics, Bayesian analysis uses laws of probability to 
quantify the uncertainty associated with statistical inferences. That is, the Bayesian framework 
(or philosophy) performs statistical estimation using laws of probability to combine a priori 
information (prior distribution) with data (data distribution) into a composite summary of 
unknown parameters (posterior distribution). 

Since the mid-1990s, researchers have widely adopted Bayesian philosophy to perform complex 
analyses of datasets. Advantages of Bayesian philosophy include the following: 

• A unified, single approach to quantifying uncertainty regarding statistical conclusions. 
• Grounding inference only in observed data (rather than relying on complex asymptotic 

mathematics). 
• The ability to combine prior knowledge into the analysis. 

Despite its popularity and advantages, the Bayesian paradigm is more complex to implement. 
Employing Bayesian estimation requires advanced computation skills and often requires writing 
problem-specific software (code). The analyst must also assign appropriate prior distributions to 
parameters they are estimating and be able to interpret the posterior distributions that are a result 
of the modeling. A single set of results may take hours of computing time to obtain. For these 
reasons, researchers who lack significant experience with or training in advanced statistical 
analyses often do not adopt the Bayesian paradigm for statistical inference. 

Standard texts for Bayesian statistics include the following: 

• Bayesian Data Analysis by A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, 
A. Vehtari, and D. B. Rubin (2013). 

• Bayesian Methods for Data Analysis by B. P. Carlin and T. A. Louis (2008). 
• A First Course in Bayesian Statistical Methods by P. D. Hoff (2009). 
• Doing Bayesian Data Analysis by J. K. Kruschke (2015). 

The texts by Hoff (2009) and Kruschke (2015) are perhaps the most approachable but still require 
a significant understanding of mathematical statistics. 

Other Methods 

While the previously discussed methods cover a breadth of statistical methodology that can be 
used to identify contributing factors from various types of data, the list is by no means 
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comprehensive. Other methods worth mentioning are data-mining techniques, such as treed 
regression or nonlinear regression, and multivariate statistical methods, such as clustering, 
multivariate regression, and factor analysis. The Elements of Statistical Learning and Data 
Mining by T. Hastie, R. Tibshirani, and J. Friedman (2009) and Introduction to Statistical 
Learning and Data Mining by G. James, D. Witten, T. Hastie, and R. Tibshirani (2013) discuss 
data-mining techniques, while Methods of Multivariate Analysis by A. C. Rencher and 
W. F. Christensen (2012) discusses multivariate methods. 

APPROACHES TO SYSTEMIC SAFETY ANALYSIS 

This section of the literature review summarizes additional resources that address crash types, 
facility types, and contributing roadway factors, primarily within the context of systemic 
approaches to road-safety management. Table 8 provides brief summaries of the resources the 
research team identified and reviewed. The table also provides a more detailed summary of a 
selected number of these resources. 

Table 8. Summary of selected literature on systemic safety analysis. 
Publication Summary of Publication 

NCHRP Synthesis 128: “Methods for 
Identifying Hazardous Highway Elements” 
(Zegeer 1986) 

Synthesizes methods used by 39 State agencies and 17 local 
agencies to identify and treat hazardous highway elements and 
determine which methods have been most successful. 

“Variable Safety Improvements for Unpaved 
Roads” (Caldwell and Wilson 1996) 

Provides a list of 12 roadway-design elements that should be 
considered in unpaved-road safety audits based on a survey of a 
steering committee. 

NCHRP 500 Series (National Academy of 
Sciences 2003a, 2003b, 2003c, 2003d, 2003e, 
2003f, 2004a, 2004b, 2004c, 2004d, 2004e, 
2004f, 2004g, 2005a, 2005b, 2005c, 2006, 
2007, 2008a, 2008b, 2008c, 2008d, 2009) 

Presents 22 emphasis areas that affect overall highway safety, as 
well as strategies for reducing crashes corresponding to these 
emphasis areas and an outline of what is needed to implement each 
strategy. 

HSM (AASHTO 2010) Includes a framework for identifying issues, developing 
countermeasures, and evaluating treatment effectiveness. Provides 
safety performance functions and CMFs for various 
facility/treatment types. Details quantitative approaches that can 
help to understand relative safety impacts of various elements. 

NCHRP Research Results Digest 345: 
Alternate Strategies for Safety Improvement 
Investments (National Academy of Sciences 
2010) 

Synthesizes practices and compares two approaches used by States 
to allocate safety funds: “black spot” analysis and “systematic” 
methods. 

“Mn/DOT County Road Safety Plans” 
(Preston and Gute 2010) 

Provides safety plans for 20 counties based on analysis of State-
specific crash data. Identifies contributing factors that increase crash 
potential and focus crash types for various facility types, including 
roadway segments, horizontal curves, and rural stop-controlled 
intersections. 

Minnesota Department of Transportation 
Traffic Safety Analysis Software State of the 
Art (Brown et al. 2011) 

Identifies and assesses safety-analysis practices and existing 
supporting software tools currently used by State transportation 
agencies, including systemic approaches to safety analysis. 

Quantitative Assessment of Local Rural Road 
Safety – Case Study 
(Mahgoub et al. 2011) 

Proposes a rural road safety index for local rural roads to rank the 
road network according to safety features and identify deficiencies 
in road sections. 
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Publication Summary of Publication 
Benefit/Cost Evaluation of MODOT’s Total 
Striping and Delineation Program (Potts 
et al. 2011) 

Documents the methodology and results of a before–after safety 
evaluation and B/C analysis of a major Missouri Department of 
Transportation program, known as the Smooth Roads Initiative, to 
improve both rideability and visibility of over 2,300 mi of major 
roadways in Missouri. 

Centerline Rumble Strips on Secondary 
Highways – A Systemic Crash Analysis 
(Wilder 2011) 

Summarizes a systemic approach to evaluate potential locations for 
and recommend the best way to implement centerline rumble strips 
in New York State on nonfreeway highway segments. 

“A Systemic Safety Project Identification 
Process – Minnesota’s County Road Safety 
Plans” (Preston 2012) 

Identifies contributing factors that increase crash potential on rural 
paved roadway segments and rural unsignalized intersections. 

Development of a Systemic Road Safety 
Analysis Tool – Roadway Departure Crashes 
at Bridges in Salem County, New Jersey 
(Cato et al. 2013) 

Presents a systemic road-safety analysis tool to examine roadway-
departure crashes at bridges. Identifies numerous characteristics 
related to a high potential of roadway-departure crashes at bridges. 

Comparison of Countermeasure Selection 
Methods for Use in Road Safety Management 
(Harwood et al. 2013) 

Compares three methods for selecting highway-infrastructure 
countermeasures to reduce crash frequency and severity: the usRAP 
Tools software (usRAP 2020), the FHWA Systemic Safety Project 
Selection tool, and road-safety audits (Preston et al. 2013a). 

Systemic Safety Project Selection Tool 
(Preston et al. 2013a) 

Describes a systemic safety-planning process, which includes 
identifying focus crash types and contributing factors, screening and 
prioritizing candidate locations, selecting countermeasures, and 
prioritizing projects. 

Using Risk to Drive Safety Investments 
(Preston et al. 2013b) 

Characterizes the systemic approach to safety management, 
identifies context (e.g., crashes, road types) suited for systemic 
safety approaches, and summarizes the cyclical three-element 
process in the Systemic Safety Project Selection Tool (Preston et al. 
2013a). 

Local and Rural Road Safety Briefing Sheets: 
Applying the Systemic Safety Approach on 
Local Roads (FHWA 2014) 

Identifies contributing factors that increase crash potential for 
roadway departures along horizontal curves in Thurston County, 
WA, for screening and prioritizing candidate locations for systemic 
improvements. 

Systemic Safety Improvement Risk Factor 
Evaluation and Countermeasure Summary: 
Final Report (Knapp et al. 2014) 

Investigates and compares two systemic safety tools/methodologies, 
an approach used to produce Minnesota county road-safety plans 
and usRAP, when applied to two counties in Iowa (usRAP 2020). 

A Systematic Approach to Identifying Traffic 
Safety Needs and Intervention Programs for 
Indiana: Volume I—Research Report (Tarko 
et al. 2014) 

Presents a method and example application for systemically 
identifying thresholds of specific characteristics that note horizontal 
curves with a high potential for roadway-departure crashes. 

Risk Factors Associated with High Potential 
for Serious Crashes (Al-Kaisy et al. 2015) 

Presents an approach that uses extensive data collection and 
analysis for a large sample of Oregon’s low-volume roads to 
develop an index that expresses the crash potential for different road 
geometries and roadside features, as well as crash history and traffic 
exposure. 

Reliability of Safety Management Methods: 
Systemic Safety Programs (Gross et al. 2016) 

Describes a process for program managers, project managers, and 
data analysts to develop and enact a comprehensive safety-
management program based on contributing factors for FCFTs. 

A Systemic Safety Analysis of Pedestrian 
Crashes: Lessons Learned (Wang et al. 2016)  

Compares candidate site-ranking methods that use contributing 
factors for systemic approaches to analyzing pedestrian crashes at 
intersections in Austin, TX. Estimates contributing factors that 
increase crash potential for pedestrian crashes at signalized and 
stop-controlled intersections and compares the effects of the ranking 
and weighting methods. 

NCHRP = National Cooperative Highway Research Program; usRAP = United States Road Assessment Program. 
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The systemic approach to safety involves identifying sites based on site-specific geometric and 
operational attributes rather than observed crashes (Gross et al. 2016). FHWA developed a 
Systemic Safety Project Selection Tool, which identifies a systemic safety-planning process that 
includes the following steps (Preston et al. 2013a): 

1. Identify focus crash types and contributing factors. 
2. Screen and prioritize candidate locations. 
3. Select countermeasures. 
4. Prioritize projects. 

The first step relates most closely to this research, and its objective is to identify contributing 
factors commonly associated with each focus crash type experienced across the road system 
(Preston et al 2013a). These are the crash types that have the greatest potential for reducing fatal 
and severe injuries. The FHWA Systemic Safety Project Selection Tool notes that the State’s 
Strategic Highway Safety Plan (SHSP) is a good starting point for identifying such contributing 
factors, particularly the State’s documented emphasis areas, which are typically identified 
through a data-driven approach, similar to those recommended by the FHWA tool. An example 
data-driven approach for identifying focus crash types is to disaggregate jurisdiction-wide crash 
data by SHSP emphasis area. The focus crash types may be selected as the most frequently 
occurring statewide, the most frequently occurring crash type by jurisdiction or area type 
(e.g., most frequent crash type for rural areas, counties, and/or urban areas), or the most 
overrepresented when comparing proportions of crashes in a specific jurisdiction or area type to 
the State numbers. 

The second step is to identify where crashes are occurring (i.e., the focus facilities). The FHWA 
Systemic Safety Project Selection Tool recommends using a crash tree diagram for this purpose. 
For a focus crash type, the crash tree begins with total KA crashes and uses available data to 
subdivide each subsequent level (e.g., area type, ownership, segments/intersections, surface type, 
number of lanes, posted speed limit). Each branch of the tree contains nodes that identify the 
number of KA crashes for those conditions. The nodes with the highest counts yield the focus 
facility types (i.e., facility type where the focus crash type most frequently occurs).  

Once analysts identify FCFTs, they can identify and evaluate contributing factors. This can be 
done as an extension of identifying focus facility type (using branches and nodes on crash tree 
diagrams), further focusing on curvature, posted speed limit, traffic volume as data are available, 
or by listing known contributing roadway factors for which data are available. The FHWA 
Systemic Safety Project Selection Tool provides the following list of example factors whose 
presence, absence, and/or characteristics may influence crash potential (Preston et al. 2013a, 
p. 18): 

• Number of lanes. 
• Lane width. 
• Shoulder surface width and type. 
• Median width and type. 
• Horizontal curvature, superelevation, delineation, or advance warning devices. 
• Horizontal curve density. 
• Horizontal curve and tangent speed differential. 
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• Presence of a visual trap at a curve or combinations of vertical grade and horizontal 
curvature. 

• Roadway gradient. 
• Pavement condition and friction. 
• Roadside or edge hazard rating (potentially including sideslope design). 
• Driveway presence, design, and density. 
• Presence of shoulder or centerline rumble strips. 
• Presence of lighting. 
• Presence of on-street parking. 
• Intersection skew angle. 
• Intersection traffic control device. 
• Number of signal heads versus number of lanes. 
• Presence of backplates. 
• Presence of advanced warning signs. 
• Intersection located in or near horizontal curve. 
• Presence of left-turn or right-turn lanes. 
• Left-turn phasing. 
• Allowance of right-turn-on-red. 
• Overhead versus pedestal-mounted signal heads. 
• Pedestrian crosswalk presence, crossing distance, signal head type. 
• Average daily traffic volumes. 
• Average daily entering vehicles. 
• Proportion of commercial vehicles in traffic stream. 
• Posted speed limit or operating speed. 
• Presence of nearby railroad crossing. 
• Presence of automated enforcement. 
• Adjacent land use type (e.g., schools, commercial, or alcohol-sales establishments). 
• Location and presence of bus stops. 

Further, the FHWA Systemic Safety Project Selection Tool suggests using the predictive method 
from the HSM as a resource for identifying potential contributing roadway factors. The HSM 
predictive method includes segment and intersection safety-performance functions and 
adjustment factors for facility types listed in the Facility Types section of the HSM. The HSM 
and HSM supplement contain an extensive list of adjustment factors that have been related to 
crash frequency (AASHTO 2014). However, the HSM predictive method generally focuses on all 
crashes or all crash severities for specific crash types (e.g., all multivehicle crashes). Adjustment 
factors are associated with total crashes and not necessarily severe injury crashes of a highly 
specific type. 

Alternatively, analysts can use contributing roadway factors identified in other research or 
through analysis of their own data (including development of crash-prediction models). The 
following discussion focuses on research that has looked at the process for site selection, 
contributing roadway-factor identification, prioritization, and methods for implementing systemic 
safety approaches. 
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National Cooperative Highway Research Program’s (NCHRP’s) Research Results Digest 345: 
Alternate Strategies for Safety Improvement Investments reviewed the “black spot” and 
“systematic” methods for allocating safety resources (National Academy of Sciences 2010). The 
authors distributed a survey to all 50 State DOTs and received responses from 25 State agencies. 
Additionally, the researchers conducted in-depth case studies with four States (Iowa, Minnesota, 
Missouri, and North Carolina). The authors found that most agencies target safety funds at 
high-crash locations; however, there was a trend of increasing the proportion of safety funding 
toward systemwide improvements. The authors also noted that the characteristics associated with 
KA crashes have caused programs to be more focused on rural areas and include more projects 
involving widely deploying proactive, low-cost strategies across systems. The States identified 
two challenges associated with the safety planning process: the analytical process for identifying 
candidate locations for investment in rural areas is not well developed, and while States have 
increased engagement with local road authorities, concerns remain about their lack of 
safety-planning experience. 

Gross et al. (2016) developed Reliability of Safety Management Methods: Systemic Safety 
Programs to help program managers, project managers, and data analysts develop comprehensive 
safety-management programs. The objectives of the guide were to raise awareness of the 
systemic approach to safety management, characterize typical projects identified and 
implemented through a comprehensive safety-management program, demonstrate the value of 
integrating systemic approaches as part of a comprehensive safety-management program, and 
provide information on allocating funding to systemic projects within a comprehensive 
safety-management program. The guide described the state of the practice and the latest tools to 
support systemic safety analyses. Additionally, the guide described the systemic approach as 
having the following steps: 

1. Identify FCFTs. 
2. Determine contributing factors. 
3. Select countermeasures. 
4. Screen network for suitable locations. 
5. Evaluate safety effects. 

The authors suggested that contributing factors should be identified using statistical modeling or 
cross-tabulations, identifying the association of specific roadway data with each crash type. If the 
agency does not have data or expertise to determine contributing factors for a focus crash type, 
the guide suggests using the NCHRP Report 500 series (National Academy of Sciences 2003a, 
2003b, 2003c, 2003d, 2003e, 2003f, 2004a, 2004b, 2004c, 2004d, 2004e, 2004f, 2004g, 2005a, 
2005b, 2005c, 2006, 2007, 2008a, 2008b, 2008c, 2008d, 2009) to identify contributing factors 
related to specific crash types. The authors suggested the following common segment and 
intersection features to define contributing factors: 

• Segment features: number of lanes, lane width, shoulder type and width, median type and 
width, road edge features and quality, number and type of access points, radius and 
superelevation of horizontal curves, speed limit, speed differential between horizontal 
curves and tangent segments, roadside hazards, and pavement condition and friction. 
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• Intersection features: number of approaches, number of approach lanes, traffic control 
devices, skew, proximity to horizontal and vertical curves, signal timing, proximity to 
railroad crossings, presence of street lighting, proximity to nearby access points, and 
presence of commercial developments. 

Some transportation agencies have been utilizing their State-specific datasets to conduct systemic 
analyses. For example, the Minnesota Department of Transportation (MnDOT) has been working 
with counties to address fatalities on local roads, where more than 50 percent of Minnesota traffic 
fatalities occur (Preston and Gute 2010). MnDOT recognized that local agencies have less 
experience in conducting systemwide crash analysis or linking crash causes with mitigation 
strategies at specific locations on their system. Therefore, MnDOT began working on an initiative 
to develop a roadway-safety plan for each county within the State, concentrating on information 
specific to individual counties and identifying opportunities to reduce KA crashes. MnDOT funds 
the planning process, which includes the following: 

• Performing crash analyses and conducting a systemwide assessment of crash potential. 
• Identifying unique, low-cost infrastructure-based safety projects that can be deployed 

across the county. 
• Developing unique safety plans for each county. 

The research team completed its review of safety plans for 20 counties with the focus on 
roadway-departure crashes on local roads and ANG crashes at rural stop-controlled intersections 
in 2010. The State DOT identified contributing factors for roadway segments, horizontal curves, 
and rural stop-controlled intersections, along with the following contributing factors relevant to 
crashes involving curves (Preston and Gute 2010): 

• Average daily traffic (ADT) volume. 
• Curve radius (most crashes occur on curves with radii ranging between 500 and 1,500 ft). 
• History of KA crashes on curves. 
• Presence of an intersection or visual trap on a curve. 

Additionally, the State DOT identified the following contributing factors for rural paved 
segments (Preston 2012): 

• Density of roadway-departure crashes. 
• Traffic volume. 
• Curve density. 
• Access density. 
• Pavement edges. 

For rural unsignalized intersections, the State DOT identified the following contributing factors 
(Preston 2012): 

• Skewed minor leg approach. 
• Intersection on/near horizontal curve. 
• Minor and major ADT ratios. 
• Proximity to previous stop sign. 
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• Proximity to railroad crossing. 
• Intersection-related crashes. 
• Commercial development in quadrants. 

Thurston County, WA, Public Works selected roadway departures along horizontal curves as a 
target crash type based on a review of severe crash data (FHWA 2014). After reviewing crash 
data linked with roadway characteristics, they selected the following contributing factors with 
high crash potential to screen and prioritize candidate locations for systemic improvements: 

• Roadway class of major rural collector. 
• Presence of an intersection. 
• Traffic volume of 3,000 to 7,500 AADT. 
• Edge clearance rating of 3 (on a scale of 1 [widest] to 3 [narrowest]). 
• Paved shoulders ≥4 ft in width. 
• Presence of a vertical curve. 
• Consecutive horizontal curves (windy roads). 
• Speed differential between posted approach speed and curve advisory speed of 0, 5, and 

10 mph. 
• Presence of a visual trap (a minor road on the tangent extended). 

Salem County, NJ, developed a systematic road-safety analysis tool to examine 
roadway-departure crashes at bridges (Cato et al. 2013). The authors found the following 
roadway characteristics to be related to a higher potential of roadway-departure crashes at 
bridges: 

• Pavement width is <22 ft. 
• Shoulder width is <1.5 ft. 
• Lane width is <10.5 ft. 
• Pavement condition is fair or poor. 
• Superelevation is minimal or nonexistent for a horizontal curve. 
• Friction is fair or poor. 
• Striping is fair or poor. 
• Advance warning signs are minimal or nonexistent. 
• Object markers are in poor condition or nonexistent. 
• Abutment condition is fair or poor. 
• Vertical curve exists. 
• Horizontal curve exists. 

Preston et al. (2013b) characterized the systemic approach to safety management and summarized 
the cyclical, three-element process in the Systemic Safety Project Selection Tool (Preston et al. 
2013a). To demonstrate the contexts that are suited for systemic safety approaches, the 
researchers conducted a pilot test in three States: Kentucky, New York, and Washington. Table 9 
provides a summary of how each State implemented the systematic approach, including the 
facility type, crash type, and contributing factors used for network screening. 
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Table 9. Systemic approach summary. 
Method for 

Network 
Screening Kentucky New York Washington 

Facility type County roadways Rural undivided roadways County arterial and collector 
roads 

Crash type Roadway-departure crashes on 
horizontal curves 

Lane-departure crashes Roadway-departure crashes 

Contributing 
factors 

Traffic volume, access density, curve 
density for critical radius curves, 
presence of advance signing, 
intersections on the curves, and 
visual traps 

Number of lanes, speed, 
traffic volume, shoulder 
width, lighting conditions, 
and curve radius 

Speed differential, visual 
trap, intersections, presence 
of advance warning signs, 
and edge assessment 

Wang et al. (2017) compared the effects of the ranking and weighting methods using a dataset of 
intersection (signalized and stop controlled) pedestrian crashes from Austin, TX. They obtained 
crash data from the Crash Records Inventory System of the Texas DOT2 and collected 
intersection characteristics data using Google® Street View™ (Google 2018). The researchers 
used the following contributing factors for the evaluation: 

• Land-use entropy. 
• Number of bus stops within 0.2 mi. 
• Sidewalk presence/absence. 
• Lighting presence/absence. 
• Pedestrian crosswalk presence/absence. 
• Percentage of one-way streets. 
• Bike lane presence/absence. 
• Number of approaches. 
• Total number of lanes. 
• Percentage of painted/raised medians. 
• Average speed limit. 
• Truck composition (percent single truck + percent combo truck). 
• Average of approach ADTs. 
• Pedestrian miles traveled. 

Wang et al. (2017) used NB regression models to relate pedestrian crashes to traffic volume, 
intersection attributes, and contextual factors. The NB regression models revealed that land-use 
mix, number of approaches, percentage of one-way streets, and number of bus stops within 
0.2 mi are positively correlated to pedestrian-crash potential at stop-controlled intersections. The 
total number of lanes and total number of bus stops within 0.2 mi of intersections are positively 
correlated to pedestrian-crash potential at signalized intersections. The percentage of one-way 
streets and percentage of painted/raised medians is negatively correlated with pedestrian crash 
potential at signalized intersections. 

Al-Kaisy et al. (2015) developed an index that estimates crash potential to be used in proactively 
identifying locations or segments for potential safety improvements on low-volume roads in 

 
2The Crash Records Inventory System of the Texas DOT is not available to the public.  



36 

Oregon. The index considers three major factors: geometric features, crash history, and traffic 
exposure. The researchers performed cross-tabulations and multivariate linear regression and 
correlation analyses to identify the relationship between road characteristics and observed crashes 
as well as their significance. Identified contributing factors include the following: 

• Degree of curvature. 
• Length of vertical curve. 
• Lane width. 
• Grade. 
• Shoulder width. 
• Driveway density. 
• Side-slope rating. 
• Fixed-object rating. 
• AADT. 
• Crash history. 

The final crash index is a function of the roadway geometry and expressed as a value from 0.15 
to 1.0, where higher values correspond to a greater crash potential. The weights of individual 
geometric features are based on the data analysis and not recommended for alteration. However, 
the authors suggested that the overall weights that define the proportion of the crash index due to 
geometric features versus crash history or traffic exposure may benefit from agency input. 

Caldwell and Wilson (1996) described the need for a different approach to safety-improvement 
projects on unpaved roadways. Their approach used a survey of a steering committee to collect 
information about safety on unpaved roadways. The steering committee identified 12 roadway 
elements that should be the focus of unpaved road-safety audits. These elements included surface 
width, consistency, sight distance, signage, surface condition, prudent speed, horizontal curves, 
Percentage of trucks on the roadway, bridges, railroad crossings, vertical curves, foreslope, clear 
zone, and pedestrian/bicyclist presence. 

Mahgoub et al. (2011) developed the rural road safety index (RRSI) using a dataset from 
Brookings County, SD. The RRSI ranks roadway network locations based on their safety features 
to identify deficiencies. The authors proposed the RRSI to support roadway-safety reviews. The 
study found the following factors that contributed to crash potential on the local roads of 
Brookings County: 

• Intersection sight distance. 
• ANG of approach. 
• Signage. 
• Road alignment. 
• Vertical and horizontal curves. 
• Culverts. 
• Table drains. 
• Location of signage. 
• Visibility and legibility of signs. 
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Recently, two studies compared the FHWA Systemic Safety Project Selection Tool to other 
methods for selecting systemic safety improvements (Preston et al. 2013a; Knapp et al. 2014). 
Knapp et al. (2014) compared five selection tools/methodologies, including the following, 
through a comprehensive literature review: 

• Minnesota Country Road Safety Plan (CRSP) (MnDOT 2020). 
• FHWA Systemic Safety Project Selection Tool (Preston et al. 2013a). 
• United States Road Assessment Program (usRAP) (usRap 2020). 
• New Jersey Systemic Road Safety Tool. 
• Safety Analyst (AASHTO n.d.). 

The researchers compared general availability, required input data, ease of use, basis of 
prioritization, and potential for sensitivity analysis. The tools varied widely in terms of 
data-collection requirements and cost, but all tools used a rating (e.g., stars) of number of 
contributing factors and/or B/C ratios for location prioritization. The authors recommended the 
Minnesota CRSP and usRAP approaches for application on Iowa’s paved secondary rural 
roadways. 

Knapp et al. (2014) implemented the Minnesota CRSP approach by collecting five safety 
contributing factors for horizontal curves, seven for stop-controlled intersections, and five for 
segments, as outlined by Preston and Gute (2010) and Preston (2012). To apply usRAP, they 
collected the following data variables: 

• Carriageway/roadway: number of divided and undivided highways and direction of travel. 
• Distance: distance in kilometers from the start of the road segment. 
• Length: length of roadway sections generally in kilometers (typically 100 m or 328 ft). 
• Latitude and longitude: coordinates in decimal degrees for the starting point of each 

328-ft roadway section. 
• Landmark: presence of key landmarks (e.g., town/village sign, major bridge, toll booth). 
• Traffic flow: number of vehicles recorded on each section of the road (e.g., AADT). 
• Motorcycle percentage: percentage of motorcycles in the traffic flow. 
• Observed bicycle flow: number of bicycles in the traffic flow. 
• Pedestrian flow—crossing road: number of pedestrians observed crossing the road. 
• Pedestrian flow—along road: number of pedestrians observed walking along the road. 
• Area type: level of roadside development (e.g., urban, semiurban). 
• Number of lanes for use by through traffic: total number of lanes in one direction of 

travel. 
• One-way/two-way flow: traffic-flow operation. 
• Speed: actual posted speed limit in miles per hour. 
• Lane width for lanes serving through traffic: distance from the outside edge of the 

traveled way or the center of the edgeline marking to the center of the adjacent lane or 
centerline marking. 

• Paved shoulder width: paved section of the roadway outside the edgeline that is safe and 
drivable usually measured from the center of the shoulder marking to the outside edge of 
the paved roadway or from the outside edge of the traveled way to the outside edge of the 
paved roadway. 
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• Unpaved shoulder width: space available for pedestrians to walk along the side of the 
road. 

• Shoulder rumble strips: presence of rumble strips. 
• Curvature: horizontal alignment (e.g., very sharp, sharp) of the roadway that may be 

based on advisory posted speed limits, if available. 
• Quality of curve: measure of drivers’ judgment to determine the sharpness of the curve 

and select a speed to traverse the curve. 
• Overtaking demand: developed in the preprocessing stage rather than being coded and 

represents the frequency of or possibility that vehicles would undertake passing tactics by 
using the lane in the opposing direction of travel. 

• Delineation: quality of the traffic-control devices. 
• Vertical alignment variation: change in the roadway gradient along its length. 
• Road condition: roadway-surface condition with respect to skid resistance. 
• Sidewalk provision—right: presence of a sidewalk on the right side of the road. 
• Sidewalk Provision—left: presence of a sidewalk on the left side of the road. 
• Land use—right and left: measure of the possibility of generating pedestrian activity 

along the roadside. 
• Side friction: extent of interaction between the activities along the roadside and traffic on 

the roadway. 
• Pedestrian-crossing facilities: number of pedestrian-crossing facilities. 
• Quality of crossing: measure of road-crossing visibility for drivers and the presence of 

warning signs. 
• Bicycle facilities: presence of facilities (i.e., bike paths or shared lanes) for bicyclists. 
• Roadside severity—separated bicycle path: qualitative measure of the severity of the 

roadside present on segregated bicycle facilities based on the presence, type, and location 
of roadside objects, crashworthy barrier, and roadside slopes. 

• Motorcycle facilities: number of facilities for motorcyclists or other motorized two-wheel 
vehicles. 

• Roadside severity—separated motorcycle path: qualitative measure of the severity of the 
roadside present on segregated motorcycle facilities based on the presence, type, and 
location of roadside objects, crashworthy barrier, and roadside slopes. 

• Speed limit—separated motorcycle path: posted speed limit for segregated motorcycle 
paths. 

• Median type—separated motorcycle path: presence of roadway infrastructure that 
separates opposing traffic flows for a segregated motorcycle path. 

• Minor access—point density: number of driveways within each 327-ft roadway segment 
for both urban and semiurban areas. 

• Roadside severity—right: distance to the nearest object likely to be struck by an errant 
vehicle on the right side of the road that could result in serious or fatal injury to vehicle 
occupants. 

• Roadside severity—left: distance to the nearest object likely to be struck by an errant 
vehicle on the left side of the road that could result in serious or fatal injury to vehicle 
occupants. 

• Intersection type: type of intersection (e.g., signalized four-leg, unsignalized three-leg). 



39 

• Intersection quality: measure of the quality (i.e., condition and location) of intersection 
design features (e.g., advance warnings, signs, markings) and sight distance to the 
intersection for approaching vehicles. 

• Intersecting road volume: approach traffic volume (a rating based on volume, if known). 
• Median type: presence of infrastructure separating opposing traffic flow. 
• Major upgrade cost impact: measure that takes into consideration the influence of 

surrounding land use, environment, and topography on the cost of major developmental-
upgrade projects. 

• Comments: (optional) roadway safety and obstacles faced during the coding process. 
• Roadwork (work zones): presence of any major roadway construction or work zones. 

When applying the two approaches, Knapp et al. (2014) changed one or more input variables in 
each tool to adjust the coefficients (or weights) of contributing factors in the Minnesota CRSP 
approach. The researchers recommended that contributing factors should have the objective of 
identifying locations with characteristics known to impact rural roadway safety and locations 
should be differentiated by relatively unique contributing factors or combinations of contributing 
factors. 

Harwood et al. (2013) compared three methods for selecting highway-infrastructure 
countermeasures to reduce crash frequency and severity using data from six Kentucky counties. 
The three methods were usRAP, the FHWA Systemic Safety Project Selection Tool, and 
road-safety audits (usRAP 2020; Preston et al. 2013a). The authors applied the FHWA tool to a 
217-mi road network with a focus on ROR crashes on horizontal curves. The contributing factors 
selected as the basis for the network screening and indicating higher crash potential included the 
following: 

• Horizontal curve density greater than mean density for critical curves with radii between 
500 and 1,200 ft. 

• Lane width <10.5 ft. 
• Shoulder type not paved. 
• Shoulder width <6 ft. 
• Speed limit >30 mph. 
• Traffic speed (higher than the speed limit or 85th-percentile speed). 
• Number of lanes. 
• Lane width. 
• Shoulder width. 
• Presence of shoulder rumble strips. 
• Delineation. 
• Passing demand. 
• Median type. 
• Curvature. 
• Quality of curve signing and marking. 
• Road-surface condition. 
• Roadside severity. 
• Number and type of intersections. 
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• Quality of intersection signing and marking. 
• Intersecting road volume. 
• Driveway density. 

The results of the correlation analysis suggested that traffic volume should be a mandatory or, at 
least, a strongly considered contributing factor. The study also suggested that traffic volume 
should have a greater weight than other variables in a prioritization scheme. The researchers 
concluded that the FHWA tool is more flexible than usRAP when adapting to specific roadway 
networks and data-availability situations since it requires fewer data variables than usRAP. 
However, the authors noted that the FHWA tool’s greater flexibility may be offset by its inability 
to weigh relevant contributing factors. Road-safety audits were most effective for identifying 
missing safety-related features or those in poor condition. 

SUMMARY 

Historically, researchers have attempted to identify contributing roadway factors related to 
various crash types, mainly through datasets developed to answer a specific question or focus on 
a specific set of characteristics (e.g., horizontal curve–related elements). Most research has 
focused on passenger cars or all user types combined. Researchers have used a variety of 
statistical methodologies to examine the relationship, but GLMs are most commonly applied to 
associate roadway characteristics with expected crash frequency. A relatively low number of 
studies focused on identifying contributing roadway factors for systemic safety analysis; 
however, the factors most commonly identified in the studies reviewed in this chapter should be 
prioritized for inclusion in future systemic safety analyses. 

Literature that focused on systemic analyses consistently concluded that the analytical process for 
identifying candidate locations for investment in rural areas was not well developed and varied 
based on weights assigned to contributing factors. Multiple proposed strategies for identifying 
sites have strengths and limitations, with some being more data intensive than others. The less 
data-intensive methods may lack the ability to conduct more robust analyses. To this point, the 
ability to identify sites requires robust data of good quality, which may be more difficult to obtain 
for lower-volume roads, roads owned by local jurisdictions, or unpaved roads. Finally, 
researchers identified that local agencies sometimes lack experience in highway-safety planning, 
and staff may not be familiar with methods to conduct systemic safety analyses. Local agencies 
will benefit from the help of State agencies and research that can preidentify contributing factors 
associated with FCFTs. This research will provide a targeted list of data for agencies to collect to 
screen and prioritize locations, as well as identify related countermeasures.
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CHAPTER 3. TERMINOLOGY 

Drawing on information from the literature review in chapter 2, this chapter includes definitions 
for crash types, facility types, crash potential, and contributing factors. These definitions will 
guide the use of such terms throughout the remainder of this report. 

Crash types are defined by the unique combinations of codes for two variables in crash reports: 
First Harmful Event and Manner of Collision. The First Harmful Event is the first injury- or 
damage-producing event of a crash. First Harmful Events generally fall into one of five 
categories, with more specific event codes under each category: 

1. Noncollision Harmful Events (e.g., rollover/overturn [ROLL], fire/explosion, jackknife). 
2. Collision with Motor Vehicle in Transport. 
3. Collision with Object Not Fixed (e.g., pedestrian, pedalcyclist, railway vehicle, animal). 
4. Collision with Fixed Object (e.g., tree, utility pole, embankment). 
5. Not Reported or Unknown. 

The Manner of Collision variable identifies the orientation of two motor vehicles in transport 
when they were involved in the First Harmful Event of a crash (e.g., front to rear, front to front, 
ANG), providing information on the crash type. Typically, a significant number of options are 
available on crash reports for defining the Manner of Collision. For example, the corresponding 
codes may indicate if the crash type is a particular type of ANG, rear-end, or sideswipe crash. If 
the First Harmful Event is not a collision between two motor vehicles, the Manner of Collision is 
classified as such (e.g., “Not a Collision with Motor Vehicle in Transport”). 

Facility types are defined by surrounding area type/land use, number of lanes, level of access 
control, and median presence, resulting in the following example facility types: 

• Rural four-lane freeway. 
• Urban four-lane freeway. 
• Urban six-lane freeway. 
• Urban eight-lane freeway. 
• Rural four-lane highway (nonfreeway): 

o Divided. 
o Undivided. 

• Rural two-lane highway. 
• Urban six-lane street: 

o Divided. 
o Undivided. 

• Urban four-lane street: 
o Divided. 
o Undivided. 

• Urban two-lane street. 
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Facility types are further broken down into site types, such as the following: 

• Urban six-lane freeway: 
o Freeway segment. 
o Freeway-ramp terminal. 
o Ramp. 
o Ramp-crossroad terminal. 

• Rural two-lane highway: 
o Tangent segment. 
o Horizontal curve segment. 
o Intersection. 

The definition of crash potential captures both the probability of an event occurring and its 
negative impact. The event of interest is the occurrence of a specific crash type. Event occurrence 
can be defined in several ways, including the following: 

• Expected frequency. 
• Probability mass (probability of 0, 1, 2, 3, or more events). 
• Cumulative probability (probability of 1 or more, 2 or more, 3 or more events). 

The negative impact of an event refers to its negative impact with respect to cost, health, human 
life, or other personal or societal impacts. This negative impact by the severity of injuries 
resulting from a crash event is defined per the following scale: 

• K = fatal injury. 
• A = incapacitating injury. 
• B = nonincapacitating injury. 
• C = possible injury. 
• O = no injury. 

Contributing factors are defined as factors whose presence is associated with increases or 
decreases in expected frequencies of crashes or injury severities resulting from crashes. Chapter 5 
will distinguish contributing factors associated with increases in crash frequency or crash severity 
and contributing factors associated with decreases in crash frequency or crash severity.
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CHAPTER 4. FCFTS 

For the purpose of this project, the research team conducted an analysis of the FARS and HSIS 
databases to inform the selection of FCFTs. FARS contains information on all K crashes that 
involved a motor vehicle traveling on a public trafficway in the 50 States, the District of 
Columbia, and Puerto Rico. HSIS contains information on crashes of all severities (fatal, injury, 
and PDO) that occurred on State-operated and -maintained roads for the participating States. This 
analysis incorporated data from four States that are part of HSIS (California, Minnesota, Ohio, 
and Washington). This chapter provides additional detail on the data, methods, and results 
regarding the selection of FCFTs. 

FARS DATABASE AND ELEMENTS 

A K crash is a crash in which the death of at least one person involved in the crash occurred 
within 30 days of the crash. FARS consists of several different files that contain information 
pertaining to K crashes. The research team analyzed three data files—Accident, Vehicle, and 
Person1—to inform the selection of FCFTs. The following are brief descriptions of the 
information available in these files: 

• The Accident data file contains information about crash characteristics and environmental 
conditions at the time of the crash. This file contains one record per crash. 

• The Vehicle data file contains information describing the in-transport motor vehicles 
involved in the crash. This file contains one record per in-transport motor vehicle 
involved in the crash. 

• The Person data file contains information describing all persons involved in the crash, 
including both motorists and nonmotorists. This file contains one record per person 
involved in the crash. 

These files can be merged using common variables, such as State, case number, vehicle number, 
and person number. The research team planned to use 6 years of FARS data ranging from 2009 to 
2014; however, due to limitations in the 2009 data with respect to intersection information2, the 
analysis incorporated FARS data from 2010 to 2014. 

The research team narrowed down a list of key variables for identifying FCFTs for each file. This 
list and a brief description of each variable are provided in appendix A. 

 
1Some variables in the Vehicle file used to be in the Accident file. For example, VTRAFCON (a traffic-control 

device) was part of the Accident file but is now in the Vehicle file. 
2In FARS, data on intersection type were not collected prior to 2009. 
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HSIS DATABASE AND ELEMENTS 

HSIS is operated by FHWA and consists of several different files that contain information 
pertaining to crashes of all severities (fatal, injury, and PDO) occurring on State-operated 
and -maintained roads for participating States. The four HSIS data files used for the purpose of 
informing the FCFT selection were the Accident, Roadway, Intersection3, and Curve4 files, 
which were used to collect data on California, Minnesota, Ohio, and Washington. The research 
team was able to efficiently identify intersections using Intersection files available for California, 
Minnesota, and Ohio and horizontal curves using Curve files available for Ohio and Washington. 

The following are brief descriptions of the information available in these four file types: 

• The Accident data file contains information about crash characteristics and environmental 
conditions at the time of the crash. This file contains one record per crash occurring on 
State-owned or -operated roads. 

• The Roadway data file contains information on homogenous sections of roadway 
(i.e., stretches of road that are consistent in terms of certain characteristics, with new 
sections defined anytime a characteristic changes). Each record represents a homogenous 
roadway segment and contains characteristics of the roadway segment, such as width of 
the traveled way, number of lanes, width of paved shoulder and total shoulder, median 
type, and other variables. 

• The Intersection data file contains information on both mainline routes and crossing 
routes of at-grade intersections. The information includes items such as intersection type, 
traffic control type, lighting, channelization, and AADT. 

• The Curve data file contains information on sections of roadway that are part of 
horizontal curves. Each record includes variables related to deflection ANG, curve 
direction, degree of curvature (and radius), curve length, speed limit, and whether or not 
the horizontal curve overlaps with a preceding curve. 

These HSIS files can be merged using common variables, such as route number, system number, 
milepost (for crashes and intersections), and beginning and end mileposts (for roadway 
segments). The analysis incorporated 6 years of HSIS data ranging from 2009 to 20145. 

The research team narrowed down a list of key variables for identifying FCFTs for each file. This 
list and a brief description of each variable are provided in appendix A. 

KEY VARIABLES FOR DEFINING POTENTIAL FCFTS 

To define potential FCFTs, the research team identified the following variables (from the variable 
list in appendix A) as the most relevant: 

 
3The Intersection file was only used for California during the FCFT analysis. For the other three States, relevant 

intersection information for identifying FCFTs was obtained from the Accident file. 
4The Curve file was only used for Washington during the FCFT analysis. For the other three States, relevant 

road-alignment information for identifying FCFTs was obtained from the Accident file. 
5The Intersection file for California was not available for 2013. As such, data from 2009 to 2012 and 2014 from 

Intersection files were used. For the other three States, data from 2009 to 2014 were used. 
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• Crash type. 
• Area type (rural versus urban). 
• Roadway type. 
• Location (intersection versus nonintersection)6. 
• Intersection type. 
• Type of traffic control. 
• Lighting (day versus night). 
• Road alignment (horizontal curve versus straight/tangent). 

The research team explored the possibility of including other variables, such as weather, driver 
demographics, and driver behavior (e.g., speeding), but concluded that these variables would be 
analyzed as potential contributing factors rather than as factors for identifying and defining 
FCFTs. This conclusion is generally consistent with how systemic safety analyses in literature 
and practice have defined FCFTs and potential contributing factors, as well as with the state of 
knowledge, linking infrastructure-related countermeasures to crash types. For example, specific 
infrastructure-related countermeasures exist for single-vehicle ROR crashes at night, but existing 
practices do not distinguish different infrastructure-related countermeasures specific to single-
vehicle ROR crashes at night for 16- to 19-year-old drivers versus other age groups. However, 
knowing that the number of 16- to 19-year-old drivers that use a segment is associated with the 
expected frequency of single-vehicle ROR crashes at night (i.e., a contributing factor) could help 
agencies identify which segments to treat systemically with proven countermeasures for ROR 
crashes. 

The following sections include detailed descriptions of how the research team derived the key 
variables used to define FCFTs, along with information on how these key variables were 
extracted from FARS and HSIS. 

Crash Type 

The research team defined crash type based on different variables identifying the manner of 
collision and first harmful event. The information used from each dataset to extract the crash type 
was as follows: 

• FARS: first harmful event and manner of collision. 
• HSIS, California: accident type. 
• HSIS, Minnesota: accident type and diagram of accident type. 
• HSIS, Ohio: accident type. 
• HSIS, Washington: accident type and first collision type. 

Area Type 

The research team defined area type as one of two categories: rural or urban. This information 
was extracted using both the area-type identifier present within the dataset and the roadway 
functional-class variable. 

 
6In FARS, location type was not available in 2009, so the research team used data from 2010 to 2014. 
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Roadway Type 

FARS and HSIS define roadway type differently. To define roadway type, FARS uses the 
following variables: roadway functional type, number of lanes, and median type. These variables 
allow for defining roadway type as interstates/freeways/expressways or two-lane/multilane 
divided or undivided roadways. HSIS uses the roadway classification variable, which 
disaggregates road type into freeways or two-lane/multilane divided or undivided roadways. 

Work zone–related crashes were excluded from this analysis. Work zones have specific 
contributing factors linked to temporary traffic-control characteristics and the type of 
construction or maintenance work. This type of information was not readily available for this 
analysis as it is typically pulled from State DOT records and construction diaries. 

Location Type 

The research team further identified crashes as being intersection or nonintersection crashes using 
the intersection variable in FARS and the location type variable in HSIS. For this analysis, 
railroad-related crashes, as identified in the Accident files of FARS and HSIS, were excluded 
from all analyses. Contributing factors for at-grade railroad crossings often include the frequency 
with which trains pass through the location; however, this type of information was not readily 
available for this analysis. 

Intersection Type 

The research team classified crashes according to the type of intersection7 (i.e., four-way 
intersection, T-intersection, Y-intersection) using the intersection type variable in FARS and 
location type in HSIS. 

Traffic Control Type 

The research team used the traffic control variable in FARS and HSIS8 to define the type of 
traffic control (i.e., stop controlled, traffic signal, yield) at the location of the crash. 

Light Condition  

The research team used the light condition variable in FARS and HSIS to define the light 
condition at the time of the crash. Daytime crashes were defined as any crash that occurred 
during the daytime. To define nighttime crashes, the following categories were combined:  
dark–lighted, dark–not lighted, dark–no lights present, dawn, and dusk. 

Road Alignment Type (Nonintersection Crashes) 

The research team defined road alignment as either a straight segment (i.e., horizontal tangent) or 
horizontal curve. This information was extracted using the road alignment variable in FARS and 

 
7HSIS data regarding intersection type were not available in the Accident files for Ohio and Washington; thus, 

crashes were identified as intersection- or nonintersection-related crashes for the purpose of informing FCFT 
selection. 

8The traffic control variable was not available in the HSIS Accident files for Ohio and Washington. 
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road characteristic variable in HSIS. This information was only extracted for nonintersection 
crashes. The road alignment variable was not available for California. In Washington, the Curve 
file was used to determine whether the crash occurred on a curve or straight segment. 

Fatal and Incapacitating Injury Crash  

In the HSIS files, KA crashes were identified using the accident severity variable. 

POTENTIAL FCFTS 

After categorizing the data using the variables identified in the section Key Variables for 
Defining Potential FCFTs, the research team developed a list of potential FCFTs. First, they 
developed separate lists of potential FCFTs using data from FARS and each HSIS State to 
observe and address consistencies and differences across the databases before selecting FCFTs 
that would become the focus of the remainder of this research. 

The research team defined potential FCFTs using a combination of the following variables: 

• Area type (rural versus urban). 
• Crash type. 
• Intersection type. 
• Lighting type (day versus night). 
• Location type (intersection versus nonintersection). 
• Road alignment type (horizontal curve versus straight segment). 
• Roadway type. 
• Traffic control type. 

For example, HEO-D crashes on rural two-lane roads on straight segments represented one 
potential FCFT. 

Potential FCFTs were then ranked using the number of K crashes and, for HSIS States, the 
number of KA crashes during the observation period corresponding to each potential FCFT. The 
analysis developed separate ranked lists based on FARS and each HSIS State to observe whether 
certain FCFTs consistently corresponded to higher or lower numbers of K crashes and KA 
crashes or whether the rankings varied considerably by database. 

This analysis approach is slightly different from the systemic safety-planning process described 
in FHWA’s Systemic Safety Project Selection Tool (discussion of this publication is in chapter 2) 
(Preston et al. 2013a). The systemic safety-planning process described by Preston et al. (2013a), 
as it applies to identifying FCFTs, is sequential and involves two main tasks. 

The first task is the selection of focus crash types: 

This task involves conducting a system wide analysis of crash types to select those 
representing the greatest potential to reduce fatalities and severe injuries. This effort 
typically results in identifying the crash types that represent the greatest number of severe 
crashes across the system being analyzed. (Preston et al. 2013a, p. 11) 
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The second task is the selection of focus facilities for the focus crash types identified in the first 
task: 

After selecting the focus crash types, Task 2 answers the question where are the crashes 
occurring? A ‘crash tree’ diagram is the recommended approach to answer this question. 
The crash tree can have a number of different formats, depending on agency capabilities 
and data availability. One such example is to begin the crash tree with the total number of 
severe crashes at the highest level. Each subsequent level separates the severe crashes by 
facility type. (Preston et al. 2013a, p. 16) 

The research team sought to determine whether the process detailed in this chapter for analyzing 
FCFTs yielded the same or different results as the process outlined in FHWA’s Systemic Safety 
Project Selection Tool (Preston et al. 2013a). To accomplish this goal, the research team applied 
FHWA’s approach to data from FARS on nonintersection crashes. The FCFTs selected from 
implementing this approach were consistent to those selected using the process detailed in this 
chapter (the results of this comparison are in appendix B). 

Tables detailing potential FCFTs are available in appendix C. Table 93 and table 94 show the 
numbers of K crashes from FARS categorized by intersection and nonintersection crashes and 
sorted by the frequency of K crashes associated with particular combinations of the variables 
identified in the section Key Variables for Defining Potential FCFTs. Table 95 through table 108 
show the numbers of K and KA crashes from the HSIS States categorized by intersection and 
nonintersection crashes and sorted by the frequency of K and KA crashes associated with 
particular combinations of the variables identified in the section Key Variables for Defining 
Potential FCFTs. 

Looking at the results from FARS and three HSIS States (Minnesota, Ohio, and Washington) it 
was clear that two-lane roads are the facility type with the highest number of K crashes. More 
specifically, lane-departure (LNDP) crashes on segments (including ROR, ROLL, HEO, and 
ANG crashes) and ANG crashes at intersections seem to have the highest numbers of fatal or KA 
crashes. HSIS only includes information from State-maintained roads, and FARS includes K 
crashes from all public roads; however, this did not impact the type of consistency observed 
between the FARS and HSIS State datasets for these potential FCFTs. Freeway crashes were 
prevalent in the HSIS California data but not so much in the data from FARS and the other HSIS 
States. The large numbers of higher AADT on urban freeways in the HSIS California data 
partially explains this finding. 

SELECTING FCFTS 

The overall work plan for this project was based on an in-depth analysis of approximately 
15 focus crash type–facility type combinations to identify contributing crash factors. 
Observations made during the FARS and HSIS State-specific analyses described earlier in this 
chapter served as the basis for selecting the 15 combinations for further analysis with respect to 
contributing crash factors. The remainder of this section provides additional information on how 
the research team addressed two crash types: pedestrian and ROR. Both of these crash types 
represent a significant number of K crashes and also have unique data-related challenges. The 
concluding sections of this chapter provide the nonintersection and intersection FCFTs.  
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Based on FARS data from 2010 to 2014, pedestrian crashes represented a significant number of 
K crashes (NHTSA 2018a): 

• 5,286 (out of 11,507) K crashes were coded as intersection crashes. 
• 14,817 (out of 77,664) K crashes were coded as nonintersection crashes. 

Identifying contributing factors for pedestrian crashes is a challenging task without quality 
exposure data (i.e., the number of pedestrians crossing at segments and intersections or walking 
parallel to segments). Methods for analyzing pedestrian crashes were very limited in the first 
edition of the HSM for this reason, and filling this gap in the second edition is a high priority for 
the research community and AASHTO. 

At the time of this project, two other efforts related to identifying factors contributing to 
pedestrian crash frequency and severity were ongoing: 

• NCHRP 17-73, Systemic Pedestrian Safety Analysis, was funded a total of $300,000 for 
2.5 years (Thomas et al. 2018). 

• NCHRP 17-84, Pedestrian and Bicycle Safety Performance Functions for the Highway 
Safety Manual, was funded a total of $500,000 for 2 years (National Academy of Sciences 
n.d.). 

The research team explored an additional original analysis using available data but was not 
confident that a quality analysis of contributing factors could be conducted with the existing data, 
which did not include pedestrian exposure and had some questionable crash-location coding 
(e.g., 350 K crashes and an additional 192 A crashes on California freeways at night). However, 
given California’s significant numbers, chapter 5 includes a discussion of contributing factors for 
pedestrian crashes, which is based on information from related published literature. 

For nonintersections, collisions with roadside fixed objects corresponded to the highest number 
of K crashes, but the research team decided not to specifically address fixed-object crashes for 
the following reasons: 

• The HSIS Roadway files have very little information about roadsides, which are 
characterized by a number of factors that likely influence ROR crashes (e.g., roadside 
slopes, types and offsets to fixed objects, types and offsets to barriers). 

• The Low-Cost Safety Improvements Pooled Fund Study, administered through the 
FHWA Office of Safety Research and Development, is sponsoring an effort to quantify 
safety effects of the presence, removal, or shielding of roadside fixed objects. 

This analysis includes ROR and LNDP crashes since they represent a significant number of 
K crashes in the country. ROR crashes are a subset of LNDP crashes. LNDP crashes are crashes 
in which a vehicle departs the travel lane, resulting in a ROR, ROLL, HEO, or ANG crash. 
This definition of LNDP is intended to be synonymous with FHWA’s definition of a 
roadway-departure crash: a crash that occurs after a vehicle crosses an edgeline or centerline or 
otherwise leaves the traveled way (FHWA 2017b). ROR crashes are any crashes in which a 
vehicle strikes a roadside object or otherwise leaves the travel lane and enters the roadside. 
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Intersection FCFTs 

The following is a list of FCFTs for which an original analysis of contributing factors was 
executed as part of this project: 

• ANG crashes on rural two-lane roads at four-leg stop-controlled intersections (daytime 
and nighttime). 

• ANG crashes on urban two-lane roads at four-leg stop-controlled intersections (daytime). 
• ANG crashes on urban multilane divided roads at four-leg signalized intersections 

(daytime). 
• ANG crashes on urban multilane undivided roads at four-leg signalized intersections 

(daytime). 
• ANG crashes on rural two-lane roads at three-leg stop-controlled intersections (daytime). 
• ANG crashes on rural multilane divided roads at four-leg minor-road stop-controlled 

intersections (daytime). 

Nonintersection FCFTs 

The following is a list of FCFTs for which an original analysis of contributing factors was 
executed as part of this project: 

• ROR crashes on rural two-lane roads on horizontal curves (daytime and nighttime). 
• ROR crashes on rural two-lane roads on straight segments (daytime and nighttime). 
• LNDP crashes on rural two-lane roads on horizontal curves (daytime and nighttime). 
• LNDP crashes on rural two-lane roads on straight segments (daytime and nighttime). 
• HEO crashes on rural two-lane roads on straight segments (daytime and nighttime). 
• ANG crashes on rural two-lane roads on straight segments (daytime). 
• HEO crashes on rural two-lane roads on horizontal curves (daytime and nighttime). 
• ROLL crashes on rural two-lane roads on straight segments (daytime and nighttime). 
• ROLL crashes on rural two-lane roads on horizontal curves (daytime and nighttime). 

This project also addresses contributing factors for two types of pedestrian crashes using 
information from related published literature: 

• All types of pedestrian crashes at intersections. 
• Pedestrian crashes at intersections involving a crossing pedestrian and vehicle going 

straight.



51 

CHAPTER 5. CONTRIBUTING FACTORS 

This chapter includes descriptions of the data, methodology, and results for identifying and 
evaluating contributing factors corresponding to the selected FCFTs noted in chapter 4. 
According to Systemic Safety Project Selection Tool, “Tasks 1 and 2 [Select Focus Crash Types 
and Select Focus Facilities] relied on data typically in the crash record system. Task 3 [Identify 
and Evaluate Contributing Factors] is the first point where road and intersection inventories are 
likely needed to provide additional levels of detail to support the data analysis” (Preston et al. 
2013a, p. 18). 

DATA 

Three different data sources were used to conduct the contributing-factor analysis: 

• HSIS (FHWA 2018c). 
• Databases from the National Oceanic and Atmospheric Administration’s (NOAA’s) 

National Centers for Environmental Information (2018). 
• Databases from the U.S. Census Bureau (2018). 

The research team initially planned on using HSIS data from four States—California, Minnesota, 
Ohio, and Washington—for the contributing-factor analysis. The plan was to use California and 
Minnesota data for the intersection contributing-factor analysis and Ohio and Washington data 
for the nonintersection contributing-factor analysis. However, the research team encountered 
some challenges using the Minnesota and Ohio datasets for this purpose. In the Minnesota data, 
major and minor roads at intersections were not always clearly defined and a framework to 
efficiently link climate and socioeconomic factors to the Minnesota HSIS Roadway file was not 
available. In the Ohio data, the main issue was that the HSIS Curve file had not been updated 
since 2009. During the analysis, issues with the Ohio data were resolved when the Ohio DOT 
(ODOT) provided their latest Curve Inventory, along with an intersection database. The research 
team resolved the issues with the Minnesota data, but the timing of these issues did not allow the 
research team to incorporate the data into the analysis. Thus, the analysis proceeded using Ohio 
and Washington data for the intersection contributing-factor analysis and California and Ohio 
data for the nonintersection contributing-factor analysis. 

The research team assembled data on climate and socioeconomic factors for the sites in 
California, Ohio, and Washington and linked these data to the study locations for use in the 
contributing-factor analysis. This process involved the following steps: 

• Acquire data: The research team obtained climate data from NOAA (2018) and 
socioeconomic data from the U.S. Census Bureau (2018). Both the climate and census 
datasets were available in spatial format. 

• Plot study sites: For each State (California, Ohio, and Washington), the research team 
developed a list of locations for the analysis, either intersections, curve segments, or 
tangent segments based on HSIS data. They then plotted each location spatially using a 
spatial roadway network obtained from each State. 
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• Associate data: The research team joined the climate and census data to the study location 
in the spatial environment. Climate data was joined to the study-site location based on the 
nearest weather station in a straight-line distance. For census data, the join was based on 
the census block that contained the study site. For segments, the census block that housed 
the midpoint of the segment served as the basis for the join. 

• Assemble data fields required for analysis: The research team assembled a working 
database that consisted of selected fields from the climate and census data. In the census 
data, the research team developed certain variables based on the raw data, such as 
“percentage of households with two or more vehicles.” 

POTENTIAL CONTRIBUTING FACTORS 

Potential contributing factors were defined for three different categories: roadway, climate, and 
census. Among potential contributing factors, it is possible that some can be direct contributing 
factors while others may be surrogates for other characteristics that were not available (e.g., data 
were not available for roadsides, driveways, how well roads were maintained, or travel patterns 
or behavior other than AADT). In all cases in this report, findings regarding contributing factors 
are interpreted as statistical associations with expected crash frequencies and severities. The 
report does not spend time covering the philosophy of causation or causal inference. That said, 
the following characteristics raise confidence that a specific finding or set of findings are stable 
and transferable: 

• Consistency across subsets of related FCFTs. 
• Consistency across multiple States. 
• Consistency with previous findings in the literature. 

Roadway 

The analysis explored potential contributing factors associated with roadways. The following list 
contains the contributing factors and their associated variable names: 

• Average AADT (avg_aadt). 
• Mainline AADT or major AADT (ML_AADT or majorAADT). 
• Cross street AADT or minor AADT (XST_AADT or minorAADT). 
• Segment length1. 
• Curve radius (curv_rad). 
• Percent grade (pct_grad)2. 
• Grade type (grad_typ). 
• Shoulder type (shl_typ). 
• Shoulder width (shldwid). 

 
1Instead of using segment length as a direct potential contributing factor in the analysis, the research team used it 

to define crash rate per mile. 
2In the Ohio data, grade information was also available for segments and intersection approaches. The percent 

grade was divided into three categories (level = <3 percent, moderate = 3–6 percent, and steep = >6 percent) and 
used as a categorical variable for the intersection contributing-factor analysis. The segment analysis used the 
absolute value of grade as a continuous variable. 
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• Terrain (terrain). 
• Speed limit (spd_limt or DESG_SPD). 
• Lane width (lanewidth). 
• Percentage of trucks on the roadway (trkpcts). 
• Median width (MEDWID). 
• Surface width (surfwid). 
• Mainline left-turn channelization (ML_LEFT). 
• Mainline right-turn channelization (ML_RIGHT). 
• Cross street left-turn channelization (xstrtlft). 
• Cross street right-turn channelization (XSTRTRGH). 
• Number of approaches with left-turn lanes (leftLanes). 
• Number of approaches with right-turn lanes (rightLanes). 

Climate 

The analysis explored the following potential contributing factors associated with climate: 

• Average annual snowfall totals (snowavgyear). 
• Average annual rainfall totals (rainavgyear). 
• Average annual maximum temperatures (tempmaxavg). 
• Average annual minimum temperatures (tempminavg). 
• Average annual winter minimum temperatures (tempwintermin). 
• Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays). 

Census 

The analysis explored the following potential contributing factors associated with socioeconomic 
characteristics:3 

• Percentage of population ages 16+ unemployed (unempl16plus). 
• Percentage of population ages 16–24 working full time (workftage16to24). 
• Percentage of population ages 16–24 working part time (workptage16to24). 
• Percentage of population ages 16–24 unemployed (noworkage16to24). 
• Percentage of population ages 25+ without a high school diploma (noedctn25plus). 
• Percentage of population ages 25+ with a high school diploma (diploma25plus). 
• Percentage of population ages 25+ with a university degree (univ25plus). 
• Percentage of households with income <$50,000 (income50k). 
• Percentage of households with income between $50,000 and $100,000 (income50to100k). 
• Percentage of households with income >$100,000 (income100kplus). 
• Percentage of households with no vehicles (noveh). 
• Percentage of households with one vehicle (X1veh). 
• Percentage of households with two or more vehicles (X2vehplus). 
• Percentage of population ages 15–19 (age15to19). 

 
3These percentages represent people or households within the census block that contains the segment or 

intersection. 
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• Percentage of population ages 20–44 (age20to44). 
• Percentage of population ages 45–64 (age45to64). 
• Percentage of population ages 6–74 (age65to74). 
• Percentage of population ages 75+ (age75plus). 

SUMMARY OF DATA 

Table 10 through table 25 provide summary statistics (minimum, maximum, average, and 
standard deviation) for roadway, climate, and socioeconomic variables for California, Ohio, and 
Washington datasets. 

Roadway variables specified as categorical variables in the analysis include lane width, shoulder 
type, surface type, terrain, and curve radius (for segment and intersection analysis using Ohio 
data). The following sections detail the categories used for each variable. 

Lane Width 

The research team divided lane width into three categories: 

• <11 ft. 
• 11–12 ft. 
• >12 ft. 

Shoulder Type 

The research team divided shoulder type into three categories with information about whether left 
and right shoulders were paved or unpaved: 

• Paved–paved. 
• Paved–unpaved. 
• Unpaved–unpaved. 

Surface Type 

The research team divided surface type into six categories for Ohio and five categories for 
Washington. The six categories used for Ohio included the following: 

• Combination surface. 
• Brick. 
• Reinforced concrete. 
• Plain concrete. 
• Dense-graded asphaltic concrete. 
• Open-graded road mix. 
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The five categories used for Washington included the following: 

• Asphalt. 
• Bituminous. 
• Gravel. 
• Portland concrete. 
• Other. 

Terrain Type 

The research team divided terrain into three categories: 

• Level. 
• Rolling. 
• Mountainous. 

Curve Radius 

For the analysis of Ohio data only, the research team divided horizontal curve radius data into 
three categories for intersection analysis and four for nonintersection analysis. The three 
categories used for intersection analysis included the following: 

• <500 ft. 
• 500–1,000 ft. 
• >1,000 ft (including intersections on tangent segments). 

The four categories used for nonintersection analysis included the following: 

• <500 ft. 
• 500–1,000 ft. 
• 1,000–1,500 ft. 
• >1,500 ft (including tangent segments). 

Data Quality Checks 

The extent of the analysis across a broad range of FCFTs did not allow the research team to 
conduct a site-by-site data check and enhancement using tools like aerial photography and video 
logs. The research team utilized descriptive statistics, including mean, standard deviation, 
minimum, and maximum values, as well as scatter plots and histograms, to identify sites with 
variable values outside of reason. After this initial data-screening process, maximum 
measurements for mainline and cross street AADTs at intersections and shoulder widths at 
nonintersection locations still stood out as “borderline” to the research team. As such, the 
research team talked with ODOT to confirm maximum mainline and cross street AADTs for 
at-grade intersections across the State. They compared ranges of mainline and cross street 
AADTs for at-grade intersections in California to AADT ranges covered by the HSM predictive 
methods and found the California data to be within reason. Finally, the research team explored 
some of the wider shoulder-width segments (e.g., 16-ft shoulder widths). They found these 



56 

measurements to be representative of a shoulder and also found that these segments make up a 
small portion of the overall samples. Therefore, these segments were kept in the analysis.
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Table 10. Summary statistics for intersections (all types) in California: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Mainline AADT (ML_AADT) (veh/day) 52.00 111,600.00 13,927.96 14,184.35 
Cross street AADT (XST_AADT) (veh/day) 1.00 77,000.00 1,309.18 3,593.86 
Mainline number of lanes (ml_lanes) 1.00 8.00 2.82 1.22 
Cross street number of lanes (xstlanes) 1.00 8.00 2.04 0.48 
Median width (MEDWID) (ft) 0.00 99.00 7.56 17.09 
Design speed (DESG_SPD) (mph) 25.00 70.00 51.67 11.19 

Table 11. Summary statistics for intersections (all types) in California: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 0.00 202.60 11.06 32.94 
Average annual rainfall totals (rainavgyear) (inches) 2.36 90.73 23.50 15.37 
Average annual maximum temperatures (tempmaxavg) (℉) 56.10 91.40 71.56 6.79 
Average annual minimum temperatures (tempminavg) (℉) 18.50 64.90 46.31 6.99 
Average annual winter minimum temperatures (tempwintermin) (℉) 5.60 51.20 36.79 7.55 
Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays) 0.00 307.50 43.43 60.30 
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Table 12. Summary statistics for intersections (all types) in California: census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 72.34 12.27 8.78 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 13.60 16.47 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 40.79 23.45 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 45.61 24.68 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 0.00 100.00 54.23 15.27 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 0.00 70.27 20.63 9.14 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 98.16 25.14 18.15 
Percentage of households with income <$50,000 (income50k) 0.00 100.00 48.63 20.29 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 76.34 27.74 11.01 
Percentage of households with income >$100,000 (income100kplus) 0.00 91.93 22.79 17.40 
Percentage of households with 0 vehicles (noveh) 0.00 86.29 6.44 8.22 
Percentage of households with 1 vehicle (X1veh) 0.00 100.00 31.45 13.28 
Percentage of households with ≥2 vehicles (X2vehplus) 0.00 100.00 61.06 18.65 
Percentage of population ages 15–19 (age15to19) 0.00 68.01 6.12 4.32 
Percentage of population ages 20–44 (age20to44) 0.00 88.26 30.10 11.31 
Percentage of population ages 45–64 (age45to64) 0.27 100.00 30.05 9.73 
Percentage of population ages 65–74 (age65to74) 0.00 55.77 9.89 6.60 
Percentage of population ages 75+ (age75plus) 0.00 74.59 6.85 5.39 
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Table 13. Summary statistics for curved segments in Washington: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Segment length (seg_lngth) (mi) 0.01 0.67 0.061 0.058 
Curve radius (curv_rad) (ft) 100.00 12,000.00 2,240.91 3,022.83 
Average AADT (avg_aadt) (veh/day) 109.00 25,599.00 2,638.68 2,794.56 
Percent grade (pct_grad) 0.00 11.91 2.23 2.07 
Shoulder width (shldwid) (ft) 0.00 20.00 3.96 2.31 
Speed limit (spd_limt) (mph) 25.00 60.00 49.20 11.60 
Percentage of trucks on the roadway (trkpcts) 0.00 61.52 14.50 8.61 

Table 14. Summary statistics for curved segments in Washington: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 0.00 139.90 19.64 27.85 
Average annual rainfall totals (rainavgyear) (inches) 0.00 119.72 43.25 33.90 
Average annual maximum temperatures (tempmaxavg) (℉) 46.70 66.20 59.61 2.57 
Average annual minimum temperatures (tempminavg) (℉) 30.60 45.70 38.76 3.57 
Average annual winter minimum temperatures (tempwintermin) (℉) 15.90 38.30 27.58 5.88 
Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays) 13.30 212.20 103.31 48.44 
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Table 15. Summary statistics for curved segments in Washington: census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 81.08 11.44 8.96 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 11.51 14.17 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 47.91 23.79 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 40.58 23.66 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 15.55 91.66 54.12 9.85 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 3.10 49.07 24.92 8.44 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 77.34 20.96 10.32 
Percentage of households with income <$50,000 (income50k) 0.00 91.04 50.48 14.71 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 100.00 32.19 10.37 
Percentage of households with income >$100,000 (income100kplus) 0.00 87.46 16.38 10.59 
Percentage of households with 0 vehicles (noveh) 0.00 33.07 3.40 4.26 
Percentage of households with 1 vehicle (X1veh) 0.00 62.10 23.21 10.30 
Percentage of households with ≥2 vehicles (X2vehplus) 0.00 100.00 72.69 13.70 
Percentage of population ages 15–19 (age15to19) 0.00 26.42 5.82 3.39 
Percentage of population ages 20–44 (age20to44) 0.00 89.36 24.18 9.62 
Percentage of population ages 45–64 (age45to64) 0.00 68.00 34.17 10.52 
Percentage of population ages 65–74 (age65to74) 0.00 56.66 12.11 6.53 
Percentage of population ages 75+ (age75plus) 0.00 34.64 6.68 4.14 

Table 16. Summary statistics for tangent segments in Washington: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Segment length (seg_lngth) (mi) 0.01 4.82 0.095 0.137 
Average AADT (avg_aadt) (veh/day) 95.00 25,599.00 2,920.16 3,016.06 
Percent grade (pct_grad) 0.00 16.13.00 1.85 1.90 
Shoulder width (shldwid) (ft) 0.00 20.00 4.02 2.49 
Speed limit (spd_limt) (mph) 25.00 60.00 48.65 11.98 
Percentage of trucks on the roadway (trkpcts) 0.00 59.62 14.58 9.04 
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Table 17. Summary statistics for tangent segments in Washington: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 0.00 139.90 22.74 28.06 
Average annual rainfall totals (rainavgyear) (inches) 7.42 119.72 40.80 32.37 
Average annual maximum temperatures (tempmaxavg) (℉) 46.70 66.20 59.83 2.66 
Average annual minimum temperatures (tempminavg) (℉) 30.60 45.70 38.88 3.57 
Average annual winter minimum temperatures (tempwintermin) (℉) 15.90 38.30 27.59 5.79 
Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays) 13.30 212.20 103.42 47.98 

Table 18. Summary statistics for tangent segments in Washington: census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 81.08 11.05 8.81 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 12.62 15.17 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 46.94 22.93 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 40.44 22.66 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 15.55 88.80 54.77 9.72 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 3.10 49.07 25.32 8.03 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 77.34 19.91 9.89 
Percentage of households with income <$50,000 (income50k) 0.00 91.04 50.56 14.87 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 100.00 32.38 10.86 
Percentage of households with income >$100,000 (income100kplus) 0.00 87.46 16.48 10.53 
Percentage of households with 0 vehicles (noveh) 0.00 33.07 3.59 4.20 
Percentage of households with 1 vehicle (X1veh) 0.00 59.91 22.89 10.30 
Percentage of households with ≥2 vehicles (X2vehplus) 0.00 100.00 73.09 12.93 
Percentage of population ages 15–19 (age15to19) 0.00 26.42 6.02 3.26 
Percentage of population ages 20–44 (age20to44) 0.00 89.36 24.87 10.04 
Percentage of population ages 45–64 (age45to64) 0.00 68.00 33.53 10.02 
Percentage of population ages 65–74 (age65to74) 0.00 56.66 11.83 6.48 
Percentage of population ages 75+ (age75plus) 0.00 38.30 6.73 4.04 
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Table 19. Summary statistics for curved segments in Ohio: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Segment length (seg_lngth) (mi) 0.02 0.33 0.058 0.031 
Curve radius (curv_rad) (ft) 100.00 1,468.00 491.27 224.11 
Percent grade (pct_grad) 0.00 20.00 3.63 4.74 
Average AADT (avg_aadt) (veh/day) 93.00 12,210.00 1,133.51 1,134.64 
Speed limit (spd_limt) (mph) 25.00 55.00 52.45 5.86 
Shoulder width (shldwid) (ft) 0.00 11.00 2.33 1.56 

Table 20. Summary statistics for curved segments in Ohio: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 4.70 109.90 20.16 9.46 
Average annual rainfall totals (rainavgyear) (inches) 33.16 48.74 41.10 2.28 
Average annual maximum temperatures (tempmaxavg) (℉) 57.00 69.00 62.43 1.99 
Average annual minimum temperatures (tempminavg) (℉) 37.00 46.00 40.84 1.61 
Average annual winter minimum temperatures (tempwintermin) (℉) 17.00 27.00 21.97 1.80 
Average annual number of days with a minimum temperature of ≤32f (temp32fdays) 88.00 148.00 122.60 11.48 
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Table 21. Summary statistics for curved segments in Ohio: census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 54.58 9.04 6.42 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 16.99 17.65 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 43.67 22.50 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 39.34 21.44 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 10.85 86.20 44.79 8.94 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 5.00 76.36 43.06 8.69 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 65.41 12.16 7.35 
Percentage of households with income <$50,000 (income50k) 6.02 95.77 55.00 12.33 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 74.37 32.24 9.83 
Percentage of households with income >$100,000 (income100kplus) 0.00 69.78 12.76 7.94 
Percentage of households with 0 vehicles (noveh) 0.00 88.11 5.62 6.72 
Percentage of households with 1 vehicle (X1veh) 0.00 69.94 23.82 10.11 
Percentage of households with ≥2 vehicles (X2vehplus) 5.41 96.38 70.56 11.34 
Percentage of population ages 15–19 (age15to19) 0.00 32.10 6.42 3.31 
Percentage of population ages 20–44 (age20to44) 1.28 79.23 27.38 6.18 
Percentage of population ages 45–64 (age45to64) 2.97 59.86 31.92 7.97 
Percentage of population ages 65–74 (age65to74) 0.00 33.27 9.65 4.17 
Percentage of population ages 75+ (age75plus) 0.00 58.01 6.68 4.01 

Table 22. Summary statistics for tangent segments in Ohio: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Segment length (seg_lngth) (mi) 0.02 10.82 0.275 0.581 
Percent grade (pct_grad) 0.00 20.00 2.95 3.99 
Average AADT (avg_aadt) (veh/day) 90.00 16,623.00 2,267.58 2,112.64 
Speed limit (spd_limt) (mph) 20.00 65.00 51.34 7.35 
Shoulder width (shldwid) (ft) 0.00 16.00 2.96 2.16 

Table 23. Summary statistics for segments in Ohio: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 4.70 109.90 25.20 15.61 
Average annual rainfall totals (rainavgyear) (inches) 31.48 48.74 40.39 2.37 
Average annual maximum temperatures (tempmaxavg) (℉) 57.00 69.00 61.51 2.16 
Average annual minimum temperatures (tempminavg) (℉) 37.00 46.00 40.58 1.77 
Average annual winter minimum temperatures (tempwintermin) (℉) 17.00 27.00 21.38 1.99 
Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays) 88.00 148.00 123.84 12.26 
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Table 24. Summary statistics for segments in Ohio: census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 54.66 8.66 6.19 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 16.65 15.78 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 45.84 21.09 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 37.51 20.30 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 10.85 86.20 44.50 9.13 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 2.75 76.81 41.42 9.03 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 82.82 14.09 8.64 
Percentage of households with income <$50,000 (income50k) 3.68 100.00 50.77 13.69 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 74.37 34.14 9.95 
Percentage of households with income >$100,000 (income100kplus) 0.00 78.45 15.08 9.41 
Percentage of households with 0 vehicles (noveh) 0.00 88.11 5.51 7.38 
Percentage of households with 1 vehicle (X1veh) 0.00 78.43 23.38 9.87 
Percentage of households with ≥2 vehicles (X2vehplus) 5.41 98.16 71.11 11.85 
Percentage of population ages 15–19 (age15to19) 0.00 51.54 6.66 3.28 
Percentage of population ages 20–44 (age20to44) 0.56 91.47 27.68 6.09 
Percentage of population ages 45–64 (age45to64) 1.68 59.86 30.83 7.42 
Percentage of population ages 65–74 (age65to74) 0.00 33.27 9.49 4.08 
Percentage of population ages 75+ (age75plus) 0.00 89.47 6.65 3.86 

Table 25. Summary statistics for intersection (all types) in Ohio: roadway inventory data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Major AADT (MajorAADT) (veh/day) 89.00 96,948.00 5,055.14 6,773.42 
Minor AADT (minorAADT) (veh/day) 100.00 84,905.00 1,221.91 2,603.86 
Median width (medianWidth) (ft) 0.00 201.00 1.57 9.23 
Speed limit (postedSpeed) (mph) 20.00 70.00 47.57 10.23 
Number of approaches with left-turn lanes (leftLanes) 0.00 4.00 0.18 0.72 
Number of approaches with right-turn lanes (rightLanes) 0.00 4.00 0.05 0.32 
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Table 26. Summary statistics for intersection (all types) in Ohio: climate data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Average annual snowfall totals (snowavgyear) (inches) 4.70 109.90 26.19 15.67 
Average annual rainfall totals (rainavgyear) (inches) 31.48 48.74 39.60 2.66 
Average annual maximum temperatures (tempmaxavg) (℉) 57.00 69.00 61.10 2.15 
Average annual minimum temperatures (tempminavg) (℉) 37.00 46.00 40.91 1.88 
Average annual winter minimum temperatures (tempwintermin) (℉) 17.00 27.00 21.41 2.03 
Average annual number of days with a minimum temperature of ≤32℉ (temp32fdays) 88.00 148.00 121.70 12.74 

Table 27. Summary statistics for intersections (all types) in Ohio: Census data. 
Data Element (Variable Name) Minimum Maximum Average Standard Deviation 

Percentage of population ages 16+ unemployed (unempl16plus) 0.00 83.87 8.73 6.69 
Percentage of population ages 16–24 working full time (workftage16to24) 0.00 100.00 17.27 16.05 
Percentage of population ages 16–24 working part time (workptage16to24) 0.00 100.00 46.98 21.01 
Percentage of population ages 16–24 unemployed (noworkage16to24) 0.00 100.00 35.75 20.27 
Percentage of population ages 25+ without a high school diploma (noedctn25plus) 0.00 100.00 44.14 9.71 
Percentage of population ages 25+ with a high school diploma (diploma25plus) 0.00 76.81 39.67 10.27 
Percentage of population ages 25+ with a university degree (univ25plus) 0.00 100.00 16.19 11.31 
Percentage of households with income <$50,000 (income50k) 0.00 100.00 50.49 15.53 
Percentage of households with income between $50,000 and $100,000 (income50to100k) 0.00 100.00 33.64 10.59 
Percentage of households with income >$100,000 (income100kplus) 0.00 96.66 15.87 10.84 
Percentage of households with 0 vehicles (noveh) 0.00 93.25 6.05 8.48 
Percentage of households with 1 vehicle (X1veh) 0.00 100.00 25.82 11.82 
Percentage of households with ≥2 vehicles (X2vehplus) 0.00 100.00 68.12 15.48 
Percentage of population ages 15–19 (age15to19) 0.00 83.50 6.65 3.59 
Percentage of population ages 20–44 (age20to44) 1.28 94.01 28.50 7.11 
Percentage of population ages 45–64 (age45to64) 0.00 68.23 30.10 7.33 
Percentage of population ages 65–74 (age65to74) 0.00 33.27 9.10 4.18 
Percentage of population ages 75+ (age75plus) 0.00 58.01 6.87 4.25 
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ANALYSIS METHODOLOGY 

The research team used random forests to identify contributing factors corresponding to selected 
FCFTs. As noted in chapter 1, the Highway Safety Statistical Paper Synthesis demonstrated 
CART and random forests within the context of conducting statistical road-safety analyses 
(Persaud et al. 2001). The study concluded that tree-based models hold strong potential for 
road-safety analyses. This current project extends the exploration of potential applications of 
tree-based methods within the context of identifying contributing factors for systemic safety 
analysis. 

Tree-based methods are a set of machine-learning and data-mining procedures. They use the form 
of a binary tree and act as predictive models that map values of a dependent variable or response 
variable (e.g., crash frequency) as a function of key explanatory variables (e.g., roadway, 
weather, sociodemographic characteristics). There are two types of tree analyses: a classification 
tree where the dependent variable is categorical and a regression tree where the dependent 
variable is continuous. The output of these analyses is a tree that shows the most predictive 
variable at the top that branches off into combinations of variables that best predict the outcome 
variable. A tree can be useful to determine contributing factors associated with different crash 
types and provide insights into interactions between contributing factors. 

Breiman and Cutler (2013) developed the random-forest algorithm, which works within the 
framework of CART. With random forests, instead of having one tree, multiple trees are 
produced using a resampling method, and the aggregate results are then combined. Breiman and 
Cutler believed that a single decision tree may not reveal all variables that contribute to the 
dependent/target variable and that the contributions of some predictive independent variables can 
be masked by other independent variables. Random forests can help identify predictors that may 
not appear in the output of a single classification or regression tree but, nevertheless, are highly 
related to the target variable. The percentage increase in mean squared error (MSE) with the 
removal of a variable from the random-forest model are commonly displayed using random 
forests. The random forests do not directly indicate if the presence of variables correspond to 
increases or decreases in expected crash frequency. However, plots of random forest–predicted 
crash frequencies as a function of variables provide the information needed to identify 
contributing factors and inform countermeasure identification. 

Figure 1 is an example of a random forest developed for crash frequency per mile of ROR-D 
crashes on Washington rural two-lane roads on horizontal curves. The vertical axis displays 
variables, and the horizontal axis shows percent increase in MSE (%IncMSE). Higher values of 
%IncMSE imply that a variable is a stronger predictor of crash frequency per mile. Typically, the 
strongest predictors are shown at the top of the plot. For example, figure 1 illustrates that curve 
radius is the strongest predictor of crash frequency per mile of ROR-D crashes on Washington 
rural two-lane roads on horizontal curves. Taking curve radius out of the analysis can potentially 
increase the MSE of predictions by approximately 40 percent. 

A sample random-forest code used in R software is provided in appendix D. 
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Source: FHWA. 

Figure 1. Graph. Crash frequency per mile of ROR-D crashes on rural two-lane roads on 
horizontal curves: Washington. 

After identifying the most predictive variables from the random forest, the research team 
identified the trend for each variable and created plots of random forest–predicted crash 
frequencies as a function of the predictor variables. 

Figure 2 shows an example of such a plot for the random forest–predicted ANG crash frequency 
as a function of mainline AADT for three-leg stop-controlled intersections on rural two-lane 
roads in California. In this case, the plot shows mainline AADT as a contributing factor 
associated with increases in predicted crash frequency (i.e., the positive slope of the linear best-fit 
line indicating that an increase in mainline AADT is associated with more ANG crashes at 
three-leg stop-controlled intersections on rural two-lane roads). Similarly, figure 3 shows an 
example of such a plot for the random forest–predicted ANG crash frequency at four-leg 
stop-controlled intersections on urban two-lane roads in California as a function of percentage of 
households with income <$50,000 within the census block containing the intersection. In this 
case, the plot shows the percentage of households as a factor that decreases predicted crash 
frequency (i.e., the negative slope of the linear best-fit line indicating that an increase in the 
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percentage of households with income <$50,000 in the census block containing the intersection is 
associated with fewer ANG crashes). 

Source: FHWA. 

Figure 2. Graph. ANG crash frequency versus mainline AADT for three-leg stop-controlled 
intersections on rural two-lane roads: California. 

Source: FHWA. 

Figure 3. Graph. ANG crash frequency versus percentage of households with income 
<$50,000 for four-leg stop-controlled intersections on urban two-lane roads: California. 

RESULTS 

The following sections of this chapter include tables that list the top 10 to 12 most influential 
predictor variables for each intersection and nonintersection FCFT according to the generated 
random forests. These top 10 to 12 variables for each FCFT serve as the focus of discussion of 
contributing factors for the respective FCFT. The tables also identify whether each variable 
contributes to an increase or decrease in the expected number of crashes. Appendix E provides 
the random-forest outputs corresponding to the analyses of all FCFTs. Appendix F provides plots 
of random forest–predicted crash frequencies as a function of selected predictor variables. 
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There are some counterintuitive results reported in the contributing-factor tables. For example, a 
roadway variable, in some cases, shows up as a contributing factor to an increase in crashes, 
whereas prior knowledge has indicated the variable to contribute to a decrease in crashes 
(e.g., wider shoulder width shows up as contributing to an increase in LNDP crashes on tangent 
segments in Washington). Such occurrences of counterintuitive findings for roadway variables 
have been denoted with two asterisks and are discussed in more detail in the following sections of 
this chapter. In general, the research team felt it useful to report the counterintuitive findings for 
the following reasons: 

• There is a much broader discussion occurring at the national level about how to address 
counterintuitive findings, particularly when so little is known about the adaptive behavior 
of drivers (e.g., countermeasures that are thought to increase crashes could induce more 
careful driving and countermeasures that are thought to reduce crashes could induce 
higher-speed driving). 

• There are relatively few examples of crash-data analysis at the level of crash-type 
disaggregation in this report, and therefore, there is not an abundance of existing 
knowledge on which to base a determination of intuitive versus counterintuitive findings 
for certain crash types. It is possible that some of the counterintuitive findings from this 
analysis could set the stage for future investigation, possibly using naturalistic-driving 
data collected as part of SHRP2. 

In a limited number of cases, roadway variables presented in the following tables did not show up 
among the top 10 most influential predictor variables for that particular FCFT but were worth 
reporting in the tables for two reasons. The first reason the variables were included was because it 
made sense from an engineering perspective and the findings (e.g., smaller radius of curve 
increases the expected frequency of ROR crashes) are likely of interest to State and local 
agencies that focus on infrastructure improvements. The second reason the variables were 
included was because their removal would still lead to an increase in MSE of model predictions 
as derived from random-forest outputs even if the variable fell outside the top 10 to 12 predictor 
variables (i.e., the variable still appeared predictive even though it fell outside of the top 10 to 12 
most predictive); when this occurs, the variables are included in the bottom rows of the tables 
below the 10 rows that identify the top most influential predictor variables. 

For the nonintersection FCFT contributing-factor analysis, Washington data were separated into 
curved and tangent segments for the analysis and Ohio data for curved and tangent segments 
were analyzed together4 in a single file. 

The contributing-factor analyses of California and Washington data were based on the expected 
number of KAB crashes. The contributing-factor analysis of Ohio data was based on both KAB 
crashes and the expected number of KABCO crashes. This latter approach for Ohio allowed the 
research team to assess whether inclusion of only certain levels of severity (i.e., KAB versus 
KABCO) influenced contributing-factor results. 

 
4The main reason behind combining the Ohio data was because ODOT defines any curve with a radius >1,800 ft 

as tangent sections, which limited the curve data compared to Washington, where radii ranged from 100 to 12,000 ft. 
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ROR CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS 

Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 28 and table 29 summarize the most influential predictor variables for the expected number 
of ROR-D crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (ROR-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROR-KABCO-D) 
according to random forests generated using Ohio data. 

Table 28. Contributing factors for ROR-KAB-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Percent grade Increases 
Surface width Decreases 
Average shoulder width Decreases 
Percentage of population ages 16+ unemployed Increases 
Percentage of population ages 20–44 Increases 
Percentage of households with 0 vehicles Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 75+ Decreases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Table 29. Contributing factors for ROR-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Surface width Decreases 
Average shoulder width Decreases 
Percent grade Increases 
Speed limit Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 75+ Decreases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
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Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 30 and table 31 summarize the most influential predictor variables for the expected number 
of ROR-N crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (ROR-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROR-KABCO-N) 
according to random forests generated using Ohio data. 

Table 30. Contributing factors for ROR-KAB-N crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Average shoulder width Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 45–64 Decreases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 75+ Decreases 
Percentage of population ages 15–19 Increases 
Percentage of population ages 20–44 Increases 
Surface width Decreases 
Percent grade Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Table 31. Contributing factors for ROR-KABCO-N crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Average shoulder width Decreases 
Curve radius Increases/decreases* 
Speed limit Increases 
Percentage of population ages 16–24 working full time Decreases 
Surface width Decreases 
Percentage of population ages 75+ Decreases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
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Washington 

Highway Tangent Segments—Daytime 

Table 32 summarizes the most influential predictor variables for the expected number of ROR-D 
crashes on rural two-lane highway tangent segments that result in fatality, incapacitating injury, 
or nonincapacitating injury (ROR-KAB-D) according to random forests generated using 
Washington data. The results in table 32 offer an opportunity to revisit key considerations for 
interpreting the results in this table, as well as subsequent tables: 

• Contributing factors are factors whose presence is associated with either increases or 
decreases in the expected frequencies of crashes according to the generated random 
forests. 

• Findings regarding contributing factors are interpreted in this project as predictive 
relationships or statistical associations with expected crash frequencies. The report does 
not cover the philosophy of causation or causal inference. That said, the following 
characteristics raise confidence that a specific finding or set of findings are stable and 
transferable: 
o Consistency across subsets of related FCFTs. 
o Consistency across multiple States. 
o Consistency with previous findings in the literature. 

Knowledge related to the safety impacts of traffic and roadway variables has grown substantially 
over the last two decades and offers a basis to interpret the results of this effort. There is not yet a 
significant amount of theory to support or refute the socioeconomic- and weather-related results 
of this effort. Findings related to socioeconomic variables are likely representative of differences 
in travel behavior, driving behavior, and driving capabilities that seem key for safety analyses but 
are generally not incorporated into analyses that also include traffic and roadway factors. 
Weather-related findings are likely representative of differences in visibility, road conditions, and 
driver experience and behavior. All findings are reported and discussed throughout the remainder 
of this report. In most cases, findings related to socioeconomic and weather variables set the stage 
for future analyses, possibly focused solely on these variables. 

Table 32. Contributing factors for ROR-KAB-D crashes on rural two-lane highway tangent 
segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade  Increases 
Average AADT  Increases 
Percentage of trucks on the roadway Decreases 
Average shoulder width  Decreases 
Average annual rainfall total  Increases 
Percentage of population ages 20–44 Increases 
Percentage of population ages 16–24 unemployed Increases 
Annual average maximum temperature Decreases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 25+ without a high school diploma  Decreases 
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Highway Tangent Segments—Nighttime 

Table 33 summarizes the most influential predictor variables for the expected number of ROR-N 
crashes on rural two-lane tangent segments that result in fatality, incapacitating injury, or 
nonincapacitating injury (ROR-KAB-N) according to random forests generated using 
Washington data. 

Table 33. Contributing factors for ROR-KAB-N crashes on rural two-lane highway tangent 
segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average shoulder width Decreases 
Percentage of trucks on the roadway Decreases 
Percent grade Decreases** 
Average AADT Increases 
Unpaved shoulders Increases 
Percentage of population ages 16+ unemployed  Increases 
Annual average winter minimum temperature Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 65–74 Decreases 
Annual average maximum temperature Decreases 

**Counterintuitive finding. 

Horizontal Curves—Daytime 

Table 34 summarizes the most influential predictor variables for the expected number of ROR-D 
crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, or 
nonincapacitating injury (ROR-KAB-D) according to random forests generated using 
Washington data. 

Table 34. Contributing factors for ROR-KAB-D crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Increases 
Percentage of trucks on the roadway Decreases 
Percent grade Increases 
Average shoulder width Decreases 
Percentage of population ages 45–64 Increases 
Annual average minimum temperature Decreases 
Annual Average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 25+ without a high school diploma Decreases 
Average annual rainfall total Increases 

*Increases crash frequency when comparing curves to tangents/decreases crash frequency when comparing curves 
(i.e., a larger radius is associated with fewer crashes). 



 

74 

Horizontal Curves—Nighttime 

Table 35 summarizes the most influential predictor variables for the expected number of ROR-N 
crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, or 
nonincapacitating injury (ROR-KAB-N) according to random forests generated using 
Washington data. 

Table 35. Contributing factors for ROR-KAB-N crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Increases 
Average shoulder width Decreases 
Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 16–24 working part time Decreases 
Percentage of households with more than 2 vehicles Increases 
Percent grade Decreases** 
Percentage of households with 1 vehicle Decreases 
Percentage of trucks on the roadway Decreases 
Percentage of population ages 25+ without a high school diploma Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ROR crashes on rural two-lane horizontal curves and tangent segments: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of ROR-D and ROR-N crashes on curves and tangent segments. 

• Average shoulder width: an increase in shoulder width was consistently associated with a 
decrease in the frequency of ROR-D and ROR-N crashes (and therefore a decrease in 
shoulder width was consistently associated with an increase in the frequency of ROR 
crashes). 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of ROR-D and ROR-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of ROR crashes). 

There were several additional roadway variables that showed relationships with ROR crash 
frequency, but results were inconsistent or could not be validated across the two States due to 
data limitations: 

• Percent grade: an increase in percent grade was associated with an increase in the 
frequency of ROR-D crashes in Washington and ROR-D and ROR-N crashes in Ohio; the 
relationship was the opposite for Washington during the nighttime. 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of ROR-D and ROR-N crashes on curves and tangent segments (and therefore 
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a decrease in surface width was consistently associated with an increase in the frequency 
of ROR crashes); this variable was only available for Ohio. 

• Unpaved shoulders or no shoulders: the presence of one or more unpaved shoulders or no 
shoulders showed up as a contributing factor that increases crash frequency when 
compared to paved shoulders but only for ROR-KAB-N crashes on tangent segments in 
Washington. 

• Speed limit: an increase in speed limit was associated with an increase in the frequency of 
ROR-D and ROR-N crashes in Ohio. 

With respect to sociodemographic characteristics, three variables appeared as contributing factors 
in both Ohio and Washington: 

• The percentage of the population ages 16+ that are unemployed appeared to increase 
the frequency of ROR-KAB-D crashes on curves and tangent segments in Ohio and 
ROR-KAB-N crashes on tangent segments in Washington. 

• The percentage of the population ages 20–44 appeared to increase ROR-KAB-D and 
ROR-KAB-N crashes on curves and tangent segments in Ohio and ROR-KAB-D crashes 
on tangent segments in Washington. 

• The percentage of the population ages 25+ with a high school diploma but no university 
degree appeared to decrease ROR-KAB-D crashes for all crash types in Ohio and on 
tangent segments in Washington. 

Other socioeconomic characteristics of note included the following: 

• The percentage of the population ages 15–19 appeared to increase ROR-KAB-N crashes 
on curves and tangent segments in Ohio. 

• The percentage of the population ages 75+ appeared to decrease ROR-D and ROR-N 
crashes on curves and tangent segments in Ohio. 

• The percentage of households with an annual income >$100,000 also appeared to increase 
crashes for two (i.e., ROR-KABCO-D and ROR-KAB-N) of the four crash types in Ohio, 
possibly serving as a surrogate for travel amount or exposure. 

With respect to weather characteristics, average annual rainfall total appeared to increase ROR-
KAB-D crashes on curves and tangent segments in Washington, but data limitations prevented 
the validation of this finding in Ohio. 

LNDP CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS 

Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 36 and table 37 summarize the most influential predictor variables for the expected number 
of LNDP-D crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (LNDP-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (LNDP-KABCO-D) 
according to random forests generated using Ohio data. 
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Table 36. Contributing factors for LNDP-KAB-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Percent grade Increases 
Surface width Decreases 
Average shoulder width Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of population ages 16+ unemployed Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Table 37. Contributing factors for LNDP-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Increases 
Average shoulder width Decreases 
Surface width Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 16+ unemployed Increases 
Speed limit Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 25+ with a high school diploma but no 
university degree 

Decreases 

Percentage of population ages 75+ Decreases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 38 and table 39 summarize the most influential predictor variables for the expected number 
of LNDP-N crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (LNDP-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (LNDP-KABCO-N) 
according to random forests generated using Ohio data. 
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Table 38. Contributing factors for LNDP-KAB-N crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Average shoulder width Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 16–24 working full time Decreases 
Percentage of population ages 45–64 Decreases 
Percent grade Increases 
Percentage of population ages 16+ unemployed Increases 
Percentage of population ages 20–44 Increases 
Surface width Decreases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Table 39. Contributing factors for LNDP-KABCO-N crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Surface width Decreases 
Curve radius Increases/decreases* 
Speed limit Increases 
Average shoulder width Decreases 
Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 75+ Decreases 
Percentage of population ages 65–74 Decreases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Washington 

Highway Tangent Segments—Daytime 

Table 40 summarizes the most influential predictor variables for the expected number of 
LNDP-D crashes on rural two-lane highway tangent segments that result in fatality, 
incapacitating injury, or nonincapacitating injury (LNDP-KAB-D) according to random forests 
generated using Washington data. 
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Table 40. Contributing factors for LNDP-KAB-D crashes on rural two-lane highway 
tangent segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Average shoulder width Increases** 
Percentage of trucks on the roadway Decreases 
Average annual rainfall total Increases 
Percentage of population ages 16–24 unemployed Increases 
Percentage of population ages 16+ unemployed  Increases 
Percentage of population ages 25+ with high school diploma but no university 
degree 

Decreases 

Percentage of households with 0 vehicles Decreases 
Average annual snowfall total Increases 
Lane width Increases** 

**Counterintuitive finding. 

Highway Tangent Segments—Nighttime 

Table 41 summarizes the most influential predictor variables for the expected number of 
LNDP-N crashes on rural two-lane highway tangent segments that result in fatality, 
incapacitating injury, or nonincapacitating injury (LNDP-KAB-N) according to random forests 
generated using Washington data. 

Table 41. Contributing factors for LNDP-KAB-N crashes on rural two-lane highway 
tangent segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Decreases** 
Average shoulder width Increases** 
Percentage of trucks on the roadway Decreases 
Average AADT Increases 
Unpaved shoulders Increases 
Percentage of population ages 16+ unemployed Increases 
Percentage of population ages 65–74 Decreases 
Annual average winter minimum temperature Decreases 
Percentage of population ages 25+ without a high school diploma Increases 
Annual average maximum temperature Decreases 

**Counterintuitive finding. 

Horizontal Curves—Daytime 

Table 42 summarizes the most influential predictor variables for the expected number of 
LNDP-D crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, 
or nonincapacitating injury (LNDP-KAB-D) according to random forests generated using 
Washington data. 
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Table 42. Contributing factors for LNDP-KAB-D crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Increases 
Percent grade Increases 
Percentage of trucks on the roadway Decreases 
Average shoulder width Decreases 
Average annual rainfall total Increases 
Percentage of population ages 45–64 Increases 
Annual average maximum temperature Decreases 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 25+ with high school diploma but no university 
degree 

Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Horizontal Curves—Nighttime 

Table 43 summarizes the most influential predictor variables for the expected number of 
LNDP-N crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, 
or nonincapacitating injury (LNDP-KAB-N) according to random forests generated using 
Washington data. 

Table 43. Contributing factors for LNDP-KAB-N crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Increases 
Percentage of trucks on the roadway Decreases 
Percentage of households with 1 vehicle Decreases 
Annual average maximum temperature Increases 
Percentage of population ages 16+ unemployed Decreases 
Average shoulder width Increases** 
Percentage of households with ≥2 vehicles Increases 
Percentage of households with 0 vehicles Decreases 
Percentage of population ages 65–74 Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with LNDP crashes on rural two-lane horizontal curves and tangent segments: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of LNDP-D and LNDP-N crashes on curves and tangent segments. 

• Percent grade: an increase in percent grade was associated with an increase in the 
frequency of LNDP-D and LNDP-N crashes in Ohio and LNDP-D crashes in 
Washington. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of LNDP-D and LNDP-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of LNDP crashes). 

There were several additional roadway variables that showed relationships with LNDP crash 
frequency, but results were inconsistent or could not be validated across the two States due to 
data limitations: 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of LNDP-D and LNDP-N crashes on curves and tangent segments (and 
therefore a decrease in surface width was consistently associated with an increase in the 
frequency of LNDP crashes); this variable was only available for Ohio. 

• Average shoulder width: an increase in shoulder width was associated with a decrease in 
the frequency of LNDP-D and LNDP-N crashes on horizontal curves in Ohio and 
LNDP-D crashes on horizontal curves in Washington (and therefore a decrease in 
shoulder width was associated with an increase in the frequency of LNDP crashes); the 
relationship was opposite for LNDP-N crashes on horizontal and LNDP-D and LNDP-N 
crashes on tangent segments in Washington. 

• Unpaved shoulders or no shoulders: the presence of one or more unpaved shoulders or no 
shoulders was associated with an increase in crashes when compared to paved shoulders 
but only for LNDP-KAB-N crashes on tangent segments in Washington. 

• Speed limit: an increase in speed limit was associated with an increase in the frequency of 
LNDP-D and LNDP-N crashes in Ohio. 

With respect to sociodemographic characteristics, the percentage of the population ages 16+ that 
is unemployed in Ohio and Washington appeared to increase LNDP-KAB-D crashes (OH curves 
and tangent segments and WA tangent segments), LNDP-KAB-N crashes (OH curves and 
tangent segments and WA tangent segments), and LNDP-KABCO-D crashes (OH curves and 
tangent segments). As an exception to this trend, the percentage of the population ages 16+ that is 
unemployed appeared to reduce LNDP-KABCO-N crashes on horizontal curves and tangent 
segments in Ohio and LNDP-KAB-N crashes on horizontal curves in Washington. The 
percentage of the population ages 25+ with a high school diploma but no university degree 
appeared to decrease LNDP-KABCO-D crashes on curves and tangent segments in Ohio and 
LNDP-KAB-D crashes on curves and tangent segments in Washington. 
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The following also appeared with respect to LNDP crashes in Ohio and Washington: 

• The percentage of households with an annual income <$50,000 appeared to decrease 
LNDP-KAB-D and LNDP-KAB-N crashes on curves and tangent segments in Ohio and 
LNDP-KAB-D crashes on horizontal curves in Washington. 

• The percentage of households with an annual income >$100,000 appeared to increase 
LNDP crashes in Ohio. 

With respect to weather characteristics, average annual rainfall total appeared to increase 
LNDP-KAB-D crashes on horizontal curves and tangent segments in Washington. 

HEO CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS 

Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 44 and table 45 summarize the most influential predictor variables for the expected number 
of HEO-D crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (HEO-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (HEO-KABCO-D) 
according to random forests generated using Ohio data. 

Table 44. Contributing factors for HEO-KAB-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Increases 
Average AADT Increases 
Curve radius Increases/decreases* 
Percentage of households with income >$100,000 Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of households with 1 vehicle Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 20–44 Increases 
Percentage of population ages 25+ without a high school diploma Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
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Table 45. Contributing factors for HEO-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Curve radius Increases/decreases* 
Percentage of households with income >$100,000 Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of households with 1 vehicle Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 16–24 unemployed Decreases 
*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 46 and table 47 summarize the most influential predictor variables for the expected number 
of HEO-N crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (HEO-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (HEO-KABCO-N) 
according to random forests generated using Ohio data. 

Table 46. Contributing factors for HEO-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Increases 
Average AADT Increases 
Surface width Increases 
Percentage of population ages 15–19 Increases 
Curve radius Increases/decreases* 
Percentage of population ages 75+ Increases 
Percentage of population ages 65–74 Decreases 
Percentage of population ages 25+ without high school diploma Decreases 
Percentage of population ages 16–24 working part time Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
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Table 47. Contributing factors for HEO-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Surface width Increases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of population ages 16–24 working full time Decreases 
Percentage of population ages 15–19 Increases 
Curve radius Increases/decreases* 
Percentage of population ages 75+ Decreases 
Percentage of population ages 16+ unemployed Increases 
Percentage of population ages 16–24 unemployed Increases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 

Washington 

Highway Tangent Segments—Daytime 

Table 44 summarizes the most influential predictor variables for the expected number of HEO-D 
crashes on rural two-lane highway tangent segments that result in fatality, incapacitating injury, 
or nonincapacitating injury (HEO-KAB-D) according to random forests generated using 
Washington data. 

Table 48. Contributing factors for HEO-KAB-D crashes on rural two-lane highway tangent 
segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of trucks on the roadway Decreases 
Annual average maximum temperature Decreases 
Average annual rainfall total Increases 
Average AADT Increases 
Percent grade Decreases** 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Unpaved shoulders  Increases 
Percentage of households with 1 vehicle Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of population ages 16–24 working part time Decreases 

**Counterintuitive finding. 

Highway Tangent Segments—Nighttime 

Table 49 summarizes the most influential predictor variables for the expected number of HEO-N 
crashes on rural two-lane highway tangent segments that result in fatality, incapacitating injury, 
or nonincapacitating injury (HEO-KAB-N) according to random forests generated using 
Washington data. 
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Table 49. Contributing factors for HEO-KAB-N crashes on rural two-lane highway tangent 
segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Decreases** 
Annual average maximum temperature Increases 
Average AADT Increases 
Percentage of households with income <$50,000 Decreases 
Annual average winter minimum temperature Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of population ages 20–44 Increases 
Annual average minimum temperature Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 

**Counterintuitive finding. 

Horizontal Curves—Daytime 

Table 50 summarizes the most influential predictor variables for the expected number of HEO-D 
crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, or 
nonincapacitating injury (HEO-KAB-D) according to random forests generated using 
Washington data. 

Table 50. Contributing factors for HEO-KAB-D crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Percentage of trucks on the roadway Decreases 
Percent grade Decreases** 
Annual average minimum temperature Decreases 
Percentage of population ages 16–24 working part time Decreases 
Percentage of population ages 15–19 Increases 
Percentage of households with income >$100,000 Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Horizontal Curves—Nighttime 

Table 51 summarizes the most influential predictor variables for the expected number of HEO-N 
crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, or 
nonincapacitating injury (HEO-KAB-N) according to random forests generated using 
Washington data. 
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Table 51. Contributing factors for HEO-KAB-N crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of population ages 15–19 Increases 
Percentage of trucks on the roadway Decreases 
Average AADT Increases 
Percentage of population ages 25+ with a high school diploma but not university 
degree 

Decreases 

Average shoulder width Increases** 
Percentage of population ages 16–24 working part time Decreases 
Percentage of households with 1 vehicle Decreases 
Percentage of households with income >$100,000 Increases 
Annual average maximum temperature Decreases 
Percentage of population ages 65–74 Decreases 

**Counterintuitive finding. 

Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with HEO crashes on rural two-lane horizontal curves and highway tangent segments: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of HEO-D and HEO-N crashes on curves and highway tangent segments. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of HEO-D and HEO-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of HEO crashes). 

There were several additional roadway variables that showed relationships with HEO crash 
frequency, but results were inconsistent or could not be validated across the two States due to 
data limitations: 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of HEO-N crashes on curves and highway tangent segments (and therefore a 
decrease in surface width was consistently associated with an increase in the frequency of 
HEO-N crashes); this variable was only available for Ohio. 

• Unpaved shoulders: unpaved shoulders appeared to increase HEO-KAB-D crashes on 
highway tangent segments in Washington. 

• Percent grade: an increase in percent grade was associated with an increase in the 
frequency of HEO-D and HEO-N crashes on curves and highway tangent segments in 
Ohio (counterintuitively, an increase in percent grade was associated with a decrease in 
HEO crashes in Washington). 

• Speed limit: an increase in speed limit was associated with an increase in HEO-KAB-N 
crashes on curves and highway tangent segments in Ohio. 

With respect to sociodemographic characteristics, several factors showed a consistent relationship 
to HEO crashes in Ohio and Washington. The percentage of the population ages 15–19 appeared 
to increase HEO-KAB-N and HEO-KABCO-N crashes on curves and highway tangent segments 
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in Ohio and HEO-KAB-D and HEO-KAB-N crashes on horizontal curves in Washington. The 
percentage of the population ages 20–24 appeared to increase HEO-KAB-D crashes on curves 
and highway tangent segments in Ohio and HEO-KAB-N crashes on highway tangent segments 
in Washington. 

The following also appeared with respect to HEO crashes in Ohio and Washington: 

• Percentage of the population ages 25+ with a high school diploma but no university 
degree appeared to decrease HEO crashes (consistent with findings for ROR and LNDP 
crashes). 

• Percentage of households with income <$50,000 appeared to decrease HEO crashes 
(consistent with findings for LNDP crashes). 

• Percentage of households with income between $50,000 and $100,000 appeared to 
increase HEO crashes. 

• Percentage of households with income >$100,000 appeared to increase HEO crashes 
(consistent with findings for ROR and LNDP crashes). 

The percentage of the population ages 25+ with a university degree appeared to increase HEO-D 
crashes in Ohio. The percentage of households with two or more vehicles appeared to decrease 
HEO-D crashes on curves and highway tangent segments in Ohio and highway tangent segments 
in Washington. 

With respect to weather characteristics, the average annual rainfall appeared to increase HEO-
KAB-D crashes on highway tangent segments in Washington. 

ROLL CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS 

Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 52 and table 53 summarize the most influential predictor variables for the expected number 
of ROLL-D crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (ROLL-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROLL-KABCO-D) 
according to random forests generated using Ohio data. 
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Table 52. Contributing factors for ROLL-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Decreases** 
Surface width Decreases 
Percentage of population ages 45–64 Increases 
Average shoulder width Decreases 
Percentage of population ages 16+ unemployed Increases 
Percentage of population ages 16–24 working full time Decreases 
Percentage of population ages 20–44 Increases 
Percentage of population ages 65–74 Decreases 
Percentage of households with income >$100,000 Decreases 
Speed limit Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Table 53. Contributing factors for ROLL-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average shoulder width Decreases 
Percentage of households with 0 vehicles Decreases 
Percentage of population ages 20–44 Increases 
Percentage of population ages 25+ with a high school diploma but no 
university degree 

Decreases 

Percentage of population ages 45–64 Increases 
Surface width Decreases 
Average AADT Decreases 
Percentage of population ages 16+ unemployed Increases 
Percentage of households with 1 vehicle Increases 
Speed limit Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 54 and table 55 summarize the most influential predictor variables for the expected number 
of ROLL-N crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (ROLL-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROLL-KABCO-N) 
according to random forests generated using Ohio data. 
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Table 54. Contributing factors for ROLL-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Increases 
Percentage of population ages 65–74 Decreases 
Average AADT Increases 
Curve radius Increases/decreases* 
Percentage of population ages 75+ Decreases 
Percentage of population ages 15–19 Increases 
Percentage of population ages 25+ without a high school diploma Decreases 
Percentage of population ages 45–64 Decreases 
Percentage of population ages 16–24 working full time Decreases 
Percentage of population ages 25+ with a high school diploma but no 
university degree 

Increases 

Surface width Increases 
Shoulder width Increases** 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Table 55. Contributing factors for ROLL-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Surface width Decreases 
Percentage of population ages 75+ Increases 
Percentage of population ages 45–64 Decreases 
Curve radius Increases/decreases* 
Percentage of population ages 65–74 Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of population ages 15–19 Increases 
Percentage of households with income <$50,000 Decreases 
Speed limit Increases 
Average shoulder width Decreases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Washington 

Highway Tangent Segments—Daytime 

Table 56 summarizes the most influential predictor variables for the expected number of 
ROLL-D crashes on rural two-lane highway tangent segments that result in fatality, 
incapacitating injury, or nonincapacitating injury (ROLL-KAB-D) according to random forests 
generated using Washington data. 
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Table 56. Contributing factors for ROLL-KAB-D crashes on rural two-lane highway 
tangent segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Increases 
Average AADT Decreases** 
Average shoulder width Increases** 
Percentage of trucks on the roadway Decreases 
Percentage of population ages 16+ unemployed Increases 
Annual average minimum temperature Decreases 
Terrain Increases 
Average annual rainfall total Increases 
Percentage of households with income >$100,000 Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 

**Counterintuitive finding. 

Highway Tangent Segments—Nighttime 

Table 57 summarizes the most influential predictor variables for the expected number of 
ROLL-N crashes on rural two-lane highway tangent segments that result in fatality, 
incapacitating injury, or nonincapacitating injury (ROLL-KAB-N) according to random forests 
generated using Washington data. 

Table 57. Contributing factors for ROLL-KAB-N crashes on rural two-lane highway 
tangent segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percentage of trucks on the roadway Increases 
Annual average winter minimum temperature Increases 
Percentage of population ages 16–24 working full time Increases 
Annual average number of days with a minimum temperature of ≤32℉ Increases 
Percentage of population ages 16–24 working part time Decreases 
Percentage of households with income between $50,000 and $100,000 Decreases 
Percentage of households with 0 vehicles Decreases 
Percentage of population ages 25+ with a university degree Decreases 
Percent grade Increases 

Horizontal Curves—Daytime 

Table 58 summarizes the most influential predictor variables for the expected number of 
ROLL-D crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, 
or nonincapacitating injury (ROLL-KAB-D) according to random forests generated using 
Washington data. 
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Table 58. Contributing factors for ROLL-KAB-D crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of population ages 16–24 working part time Increases 
Percentage of population ages 65–74 Increases 
Percentage of trucks on the roadway Decreases 
Curve radius Increases/decreases* 
Percentage of population ages 75+ Decreases 
Average AADT Increases 
Percent grade Increases 
Percentage of households with income <$50,000 Decreases 
Annual average maximum temperature Decreases 
Percentage of population ages 16–24 unemployed Decreases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 

Horizontal Curves—Nighttime 

Table 59 summarizes the most influential predictor variables for the expected number of 
ROLL-N crashes on rural two-lane horizontal curves that result in fatality, incapacitating injury, 
or nonincapacitating injury (ROLL-KAB-N) according to random forests generated using 
Washington data. 

Table 59. Contributing factors for ROLL-KAB-N crashes on rural two-lane horizontal 
curves: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average shoulder width Increases** 
Average AADT Increases 
Truck percentage Decreases 
Percent grade Increases 
Annual average maximum temperature Increases 
Percentage of population ages 25+ with a university degree Decreases 
Average annual rainfall total Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of population ages 65–74 Increases 
Percentage of population ages 75+ Decreases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 
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Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ROLL crashes on rural two-lane horizontal curves and highway tangent 
segments: 

• Average AADT: an increase in AADT was associated with an increase in the frequency of 
ROLL-N crashes on curves and highway tangent segments in Ohio and Washington; 
interestingly, AADT appeared to ROLL-D crashes in both Ohio (on curves and highway 
tangent segments) and Washington (on highway tangent segments). 

• Percent grade: an increase in percent grade was consistently associated with an increase 
in the frequency of ROLL-D and ROLL-N crashes on curves and highway tangent 
segments. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of ROLL-D and ROLL-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of ROLL crashes). 

There were several additional roadway variables that showed relationships with ROLL crash 
frequency, but results were inconsistent or could not be validated across the two States due to 
data limitations: 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of ROLL-KAB-D crashes and ROLL-KABCO-D and ROLL-KABCO-N 
crashes on curves and highway tangent segments (and therefore a decrease in surface 
width was associated with an increase in the frequency of those types of ROLL crashes); 
this variable was only available for Ohio. 

• Average shoulder width: an increase in shoulder width was associated with a decrease in 
the frequency of ROLL-KAB-D crashes and ROLL-KABCO-D and ROLL-KABCO-N 
crashes on curves and highway tangent segments (and therefore a decrease in surface 
width was associated with an increase in the frequency of ROLL crashes); the relationship 
was the opposite for ROLL-KAB-D crashes on highway tangent segments and 
ROLL-KAB-N crashes on horizontal curves in Washington. 

• Terrain: mountainous terrain appeared to increase ROLL-KAB-D crashes on highway 
tangent segments in Washington. 

• Speed limit: an increase in speed limit was associated with an increase in the frequency of 
ROLL-D and ROLL-N crashes in Ohio. 

With respect to sociodemographic characteristics, there were several predictors of ROLL crashes 
in Ohio and Washington: 

• The percentage of households with incomes between $50,000 and $100,000 appeared to 
increase ROLL-KABCO-N crashes on curves and highway tangent segments in Ohio and 
ROLL-KAB-N crashes on horizontal curves in Washington. It appeared as a factor that 
decreases the crash frequency of ROLL-KAB-N crashes on highway tangent segments in 
Ohio. 

• The percentage of households with an annual income <$50,000 appeared to decrease 
ROLL-KABCO-N crashes on curves and highway tangent segments in Ohio and 
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ROLL-KAB-D crashes on horizontal curves in Washington and (consistent with findings 
for LNDP and HEO crashes). 

• The percentage of households with an annual income >$100,000 appeared to increase 
ROLL-KAB-D crashes on highway tangent segments and ROLL-KAB-N crashes on 
horizontal curves in Washington (consistent with findings for ROR, LNDP, and HEO 
crashes). 

With respect to weather characteristics, average annual rainfall total appeared to increase 
ROLL-KAB-D crashes on highway tangent segments in Washington. 

ANG CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS 

Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 60 and table 61 summarize the most influential predictor variables for the expected number 
of ANG-D crashes on rural two-lane horizontal curves and highway tangent segments that result 
in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. 

Table 60. Contributing factors for ANG-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Decreases** 
Average AADT Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 25+ without a high school diploma Increases 
Percentage of population ages 45–64 Decreases 
Surface width Increases 
Percentage of population ages 25+ with a high school diploma but no 
university degree 

Decreases 

Percentage of population ages 20–44 Increases 
Percentage of population ages 75+ Decreases 

**Counterintuitive finding. 
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Table 61. Contributing factors for ANG-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Average shoulder width Decreases 
Percent grade Decreases** 
Percentage of population ages 16+ unemployed Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of households with 0 vehicles Decreases 
Percentage of households with 1 vehicle Decreases 
Percentage of households with ≥2 vehicles Increases 
Surface width Increases 
Speed limit Decreases** 
Curve radius Increases/decreases* 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Washington 

Highway Tangent Segments—Daytime 

Table 62 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes on rural two-lane highway tangent segments that result in fatality, incapacitating injury, 
or nonincapacitating injury (ANG-KAB-D) according to random forests generated using 
Washington data. 

Table 62. Contributing factors for ANG-KAB-D crashes on rural two-lane highway tangent 
segments: Washington. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Lane width Increases 
Average shoulder width Increases** 
Percentage of population ages 45–64 Increases 
Percentage of population ages 20–44 Decreases 
Average annual snowfall total Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Annual average maximum temperature Increases 
Annual average winter minimum temperature Decreases 
Percentage of households with income <$50,000 Decreases 

**Counterintuitive finding. 
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Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes on rural two-lane horizontal curves and highway tangent segments: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of ANG-D crashes on curves and highway tangent segments. 

There were several additional roadway variables that showed relationships with ANG crash 
frequency, but results were inconsistent or could not be validated across the two States due to 
data limitations: 

• Percent grade: an increase in percent grade was consistently associated with a decrease in 
the frequency of ANG-D crashes on curves and highway tangent segments in Ohio 
(and therefore a decrease in percent grade was consistently associated with an increase in 
the frequency of ANG crashes). 

• Surface width: an increase in surface width was associated with an increase in the 
frequency of ANG-D crashes on curves and highway tangent segments (and therefore a 
decrease in surface width was consistently associated with a decrease in the frequency of 
ANG-D crashes); this variable was only available for Ohio. 

• Average shoulder width: an increase in shoulder width was associated with a decrease in 
the frequency of ANG-KABCO-D crashes on curves and highway tangent segments in 
Ohio (counterintuitively, an increase in shoulder width was associated with an increase in 
the frequency of ANG-KAB-D crashes on highway tangent segments in Washington). 

• Curve radius: an increase in curve radius was associated with a decrease in the frequency 
of ANG-KABCO-D crashes on curves in Ohio (and therefore a decrease in curve radius 
was associated with an increase in the frequency of ANG-KABCO-D crashes). 

With respect to sociodemographic characteristics, none of the factors showed a consistent 
relationship to ANG crashes in Ohio or Washington: 

• The percentage of the population ages 25+ with a university degree appears to increase 
ANG-D crashes on curves and highway tangent segments in Ohio. 

• The percentage of households with income <$50,000 appears to decrease ANG-D crashes 
on highway tangent segments in Washington. 

• The percentage of households with income >$100,000 appears to increase ANG-D 
crashes on curves and highway tangent segments in Ohio. 

• The percentage of households with no vehicles appears to decrease ANG-D crashes on 
curves and highway tangent segments in Ohio. 

• The percentage of households with one vehicle appears to decrease ANG-D crashes on 
curves and highway tangent segments in Ohio. 

• The percentage of households with two or more vehicles appears to increase ANG-D 
crashes on curves and highway tangent segments in Ohio. 

With respect to weather characteristics, none of the factors showed a consistent relation to ANG 
crashes in Ohio or Washington. 
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ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL 
TWO-LANE ROADS 

California 

Daytime 

Table 63 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at four-leg stop-controlled intersections (with stop control on the minor road) on rural 
two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-D) according to random forests generated using California data. 

Table 63. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on rural two-lane roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Mainline AADT Increases 
Mainline left channelization Decreases 
Lane width Increases 
Annual average maximum temperature Decreases 
Percentage of population ages 25+ without a high school diploma Decreases 
Average annual rainfall total Increases 
Percentage of households with income >$100,000 Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 45–64 Decreases 

Nighttime 

Table 64 summarizes the most influential predictor variables for the expected number of ANG-N 
crashes at four-leg stop-controlled intersections (with stop control on the minor road) on rural 
two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-N) according to random forests generated using California data. 

Table 64. Contributing factors for ANG-KAB-N crashes at four-leg stop-controlled 
intersections on rural two-lane roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Design speed Increases 
Average annual rainfall total Increases 
Annual average maximum temperature Decreases 
Mainline AADT Increases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of households with income <$50,000 Decreases 
Cross street AADT Increases 
Average annual snowfall total Decreases 
Percentage of population ages 45–64 Increases 
Annual average minimum temperature Increases 
Mainline left channelization Decreases 
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Ohio 

Daytime 

Table 65 and table 66 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg stop-controlled intersections (with stop control on the minor road) 
on rural two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-D) or fatality, incapacitating injury, nonincapacitating injury, possible injury, or 
PDO (ANG-KABCO-D) according to random forests generated using Ohio data. 

Table 65. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross Street AADT Increases 
Speed limit Increases 
Mainline AADT Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 16–24 working full time Increases 
Percentage of households with ≥2 vehicles Decreases 
Annual average maximum temperature Decreases 
Percentage of households with income between $50,000 and $100,000 Decreases 
Lane width Increases 

Table 66. Contributing factors for ANG-KABCO-D crashes at four-leg stop-controlled 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Speed limit Increases 
Percentage of households with income <$50,000 Decreases 
Mainline AADT Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of population ages 16–24 unemployed Decreases 
Percentage of population ages 16–24 working part time Increases 
Average annual snowfall total Increases 
Percentage of households with ≥2 vehicles Decreases 
Lane width Increases 

Nighttime 

Table 67 and table 68 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg stop-controlled intersections (with stop control on the minor road) 
on rural two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-N) or fatality, incapacitating injury, nonincapacitating injury, possible injury, or 
PDO (ANG-KABCO-N) according to random forests generated using Ohio data. 
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Table 67. Contributing factors for ANG-KAB-N crashes at four-leg stop-controlled 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Speed limit Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of households with 1 vehicle Decreases 
Mainline AADT Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of population ages 16–24 working full time Increases 
Percentage of population ages 45–64 Increases 

Table 68. Contributing factors for ANG-KABCO-N crashes at four-leg stop-controlled 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Percentage of households with income <$50,000 Decreases 
Speed limit Increases 
Mainline AADT Increases 
Percentage of population ages 16–24 working part time Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of households with 1 vehicle Decreases 
Percentage of households with 0 vehicles Increases 
Percentage of population ages 16–24 unemployed Decreases 
Average annual snowfall total Increases 

Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes at four-leg stop-controlled intersections (with stop control on the 
minor road) on rural two-lane roads: 

• Mainline AADT: an increase in mainline AADT was consistently associated with an 
increase in the frequency of ANG-D and ANG-N crashes at four-leg stop-controlled 
intersections on rural two-lane roads. 

• Cross street AADT: an increase in cross street AADT was consistently associated with an 
increase in the frequency of ANG-D and ANG-N crashes at four-leg stop-controlled 
intersections on rural two-lane roads. 

• Speed: an increase in speed was consistently associated with an increase in the frequency 
of ANG-D and ANG-N crashes at four-leg stop-controlled intersections on rural two-lane 
roads; design speed appeared to increase ANG-KAB-N crashes in California, and speed 
limit appeared to increase ANG-KAB-D, ANG-KABCO-D, ANG-KAB-N, and 
ANG-KABCO-N crashes in Ohio. 
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• Lane width: an increase in lane width was associated with an increase in the frequency of 
ANG-D crashes at four-leg stop-controlled intersections on rural two-lane roads in 
California and Ohio. 

There were additional roadway variables that showed relationships with ANG crash frequency, 
but results were inconsistent or could not be validated across the two States due to data 
limitations: 

• Mainline left-turn channelization: presence of channelized left-turn lanes on the 
mainline was associated with a decrease in the frequency of ANG crashes at four-leg 
stop-controlled intersections on rural two-lane roads in California. 

With respect to sociodemographic characteristics, two factors showed a consistent relationship to 
ANG crashes in California and Ohio: 

• The percentage of population ages 45–64 appeared to increase ANG-KAB-N crashes at 
four-leg stop-controlled intersections on rural two-lane roads in California and Ohio 
(the relationship was opposite for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on rural two-lane roads in California). 

• The percentage of households with income >$100,000 appeared to increase ANG-D 
crashes at four-leg stop-controlled intersections on rural two-lane roads in California and 
Ohio and ANG-KAB-N crashes at four-leg stop-controlled intersections on rural two-lane 
roads in Ohio. 

• The percentage of households with income <$50,000 appeared to decrease ANG-D 
crashes at four-leg stop-controlled intersections on rural two-lane roads in California and 
Ohio; the contributing factor appeared to increase ANG-KAB-N crashes in California and 
all groups of ANG crashes in Ohio. 

The following also appeared with respect to ANG crashes in California and Ohio: 

• The percentage of the population ages 16–24 that is unemployed appeared to decrease 
ANG crashes at four-leg stop-controlled intersections on rural two-lane roads in Ohio. 

• The percentage of households with two or more vehicles appeared to decrease ANG-D 
crashes at four-leg stop-controlled intersections on rural two-lane roads in Ohio. 

With respect to weather characteristics, two factors showed a consistent relationship to ANG 
crashes: 

• Average annual rainfall total appeared to increase ANG crashes at four-leg stop-
controlled intersections on rural two-lane roads in California. 

• Annual average maximum temperature appeared to increase ANG-KAB-D and 
ANG-KAB-N crashes in California and ANG-KAB-D in Ohio. 
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ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON URBAN 
TWO-LANE ROADS 

California 

Daytime 

Table 69 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at four-leg stop-controlled intersections (with stop control on the minor road) on urban 
two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-D) according to random forests generated using California data. 

Table 69. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of households with income <$50,000 Decreases 
Design speed Increases 
Percentage of households with ≥2 vehicles Increases 
Percentage of households with income >$100,000 Increases 
Annual average maximum temperature Decreases 
Annual average minimum temperature Increases 
Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 20–44 Decreases 
Annual average winter minimum temperature Decreases 
Percentage of households with 1 vehicle Decreases 

Ohio 

Daytime 

Table 70 and table 71 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg stop-controlled intersections (with stop control on the minor road) 
on urban two-lane roads that result in fatality, incapacitating injury, or nonincapacitating injury 
(ANG-KAB-D) or fatality, incapacitating injury, nonincapacitating injury, possible injury, or 
PDO (ANG-KABCO-D) according to random forests generated using Ohio data. 
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Table 70. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Speed limit Increases 
Percentage of households with income >$100,000 Increases 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 25+ without a high school diploma Decreases 
Cross street AADT Increases 
Percentage of population ages 75+ Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of households with ≥2 vehicles Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Mainline AADT Increases 

Table 71. Contributing factors for ANG-KABCO-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Percentage of households with ≥2 vehicles Increases 
Percentage of households with income >$100,000 Increases 
Speed limit Increases 
Percentage of population ages 25+ without a high school diploma Increases 
Mainline AADT Increases 
Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of households with 1 vehicle Decreases 
Percentage of population ages 25+ with a university degree Increases 

Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes at four-leg stop-controlled intersections (with stop control on the 
minor road) on urban two-lane roads: 

• Mainline AADT: an increase in mainline AADT was associated with an increase in the 
frequency of ANG-D crashes at four-leg stop-controlled intersections on urban two-lane 
roads in Ohio. 

• Cross street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-D crashes at four-leg stop-controlled intersections on urban 
two-lane roads in Ohio. 

• Speed: an increase in speed was consistently associated with an increase in the frequency 
of ANG-D crashes at four-leg stop-controlled intersections on urban two-lane roads; 
design speed appeared to increase ANG-KAB-D crashes in California, and speed limit 
appeared to increase ANG-KAB-D and ANG-KABCO-D crashes in Ohio. 
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With respect to sociodemographic characteristics, two factors showed a consistent relationship to 
ANG crashes in California and Ohio: 

• The percentage of households with two or more vehicles consistently appeared to increase 
ANG-D crashes at four-leg stop-controlled intersections on urban two-lane roads in 
California and Ohio. 

• The percentage of households with income >$100,000 consistently appeared to increase 
ANG-D crashes at four-leg stop-controlled intersections on urban two-lane roads in 
California and Ohio. 

The following also appeared with respect to ANG crashes in California and Ohio: 

• The percentage of the population ages 16–24 that is unemployed appeared to decrease 
ANG-KABCO-D crashes at four-leg stop-controlled intersections on urban two-lane 
roads in Ohio. The percentage of the population ages 16+ appeared to decrease 
ANG-KAB-D crashes in California and ANG-KABCO-D crashes in Ohio. 

• The percentage of households with income <$50,000 appeared to decrease ANG-KAB-D 
crashes at four-leg stop-controlled intersections on urban two-lane roads in California and 
Ohio. 

With respect to weather characteristics, two factors showed a consistent relationship to ANG 
crashes: 

• Average annual minimum temperature appeared to increase ANG crashes at four-leg 
stop-controlled intersections on urban two-lane roads in California. 

• Average annual maximum temperature appeared to decrease ANG crashes at four-leg 
stop-controlled intersections on urban two-lane roads in California. 

ANG CRASHES AT FOUR-LEG SIGNALIZED INTERSECTIONS ON URBAN 
MULTILANE DIVIDED ROADS 

California 

Daytime 

Table 72 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at four-leg signalized intersections on urban multilane divided roads that result in fatality, 
incapacitating injury, or nonincapacitating injury (ANG-KAB-D) according to random forests 
generated using California data. 



 

102 

Table 72. Contributing factors for ANG-KAB-D crashes at four-leg signalized intersections 
on urban multilane divided roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average annual rainfall total Decreases 
Percentage of households with income <$50,000 Increases 
Annual average winter minimum temperature Decreases 
Annual average minimum temperature Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Design speed Increases 
Lane width Increases 
Percentage of population ages 75+ Increases 
Mainline AADT Increases 
Median width Increases 

Ohio 

Daytime 

Table 73 and table 74 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg signalized intersections on urban multilane divided roads that 
result in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. 

Table 73. Contributing factors for ANG-KAB-D crashes at four-leg signalized intersections 
on urban multilane divided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of population ages 16+ unemployed Decreases 
Percentage of population ages 45–64 Decreases 
Total AADT (mainline AADT + cross street AADT) Increases 
Speed limit Increases 
Percentage of population ages 16–24 working part time Decreases 
Percentage of population ages 25+ without a high school diploma Increases 
Percentage of households with income >$100,000 Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 25+ with a high school diploma Decreases 
Percentage of population ages 16–24 unemployed Increases 
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Table 74. Contributing factors for ANG-KABCO-D crashes at four-leg signalized 
intersections on urban multilane divided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Mainline AADT Increases 
Percentage of population ages 20–44 Increases 
Percentage of population ages 25+ without a high school diploma Increases 
Cross street AADT Increases 
Percentage of population ages 16–24 unemployed Decreases 
Percentage of population ages 45–64 Decreases 
Percentage of population ages 25+ with a high school diploma Decreases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of population ages 16–24 working full time Increases 
Median width Decreases 
Speed limit Increases 

Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes at four-leg signalized intersections on urban multilane divided 
roads: 

• Mainline AADT: an increase in mainline AADT was consistently associated with an 
increase in the frequency of ANG-D crashes at four-leg signalized intersections on urban 
multilane divided roads. 

• Cross street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
divided roads in Ohio. 

• Speed: an increase in speed was consistently associated with an increase in the frequency 
of ANG-D crashes at four-leg signalized intersections on urban multilane divided roads; 
design speed appeared to increase ANG-KAB-D crashes in California, and speed limit 
appeared to increase ANG-KAB-D and ANG-KABCO-D crashes in Ohio. 

There were additional roadway variables that showed relationships with ANG crash frequency, 
but results were inconsistent or could not be validated across the two States due to data 
limitations: 

• Lane width: an increase in lane width was associated with an increase in the frequency of 
ANG-D crashes at four-leg signalized intersections on urban multilane divided roads in 
California. 

• Median width: an increase in median width was associated with an increase in the 
frequency of ANG-KAB-D crashes at four-leg signalized intersections on urban multilane 
divided roads in California but a decrease in the frequency of ANG-KABCO-D crashes at 
four-leg signalized intersections on urban multi-lane divided roads in Ohio. 

With respect to sociodemographic characteristics, the percentage of households with income 
<$50,000 appeared to increase ANG-KAB-D crashes at four-leg signalized intersections on urban 
multilane divided roads in California. Interestingly, this factor has generally shown decreases in 
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crashes for other FCFTs but appeared to increase crashes for this FCFT. The percentage of 
the population between the ages of 45 and 64 appeared to decrease ANG-KAB-D and 
ANG-KABCO-D crashes in Ohio. The percentage of the population ages 25+ without a high 
school diploma appeared to increase ANG-KAB-D and ANG-KABCO-D crashes in Ohio. 

With respect to weather characteristics, the average annual number of days with a minimum 
temperature of ≤32℉ appeared to decrease ANG-KAB-D crashes in both California and Ohio. 

ANG CRASHES AT FOUR-LEG SIGNALIZED INTERSECTIONS ON URBAN 
MULTILANE UNDIVIDED ROADS 

California 

Daytime 

Table 75 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at four-leg signalized intersections on urban multilane undivided roads that result in 
fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) according to random 
forests generated using California data. 

Table 75. Contributing factors for ANG-KAB-D crashes at four-leg signalized intersections 
on urban multilane undivided roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of population ages 25+ with a university degree Increases 
Percentage of population ages 45–64 Decreases 
Percentage of population ages 65–74 Increases 
Percentage of population ages 25+ without a high school diploma Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of population ages 20–44 Decreases 
Lane width Decreases 
Cross street right-turn channelization Decreases 
Cross street AADT Decreases** 

**Counterintuitive finding. 

Ohio 

Daytime 

Table 76 and table 77 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg signalized intersections on urban multilane undivided roads that 
result in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. 
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Table 76. Contributing factors for ANG-KAB-D crashes at four-leg signalized intersections 
on urban multilane undivided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Mainline AADT Increases 
Cross street AADT Increases 
Speed limit Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Increases 

Percentage of households with income <$50,000 Increases 
Percentage of households with ≥2 vehicles Increases 
Percentage of households with 1 vehicle Decreases 
Percentage of population ages 25+ with a university degree Decreases 
Percentage of population ages 25+ without a high school diploma Increases 
Percentage of households with 0 vehicles Increases 

Table 77. Contributing factors for ANG-KABCO-D crashes at four-leg signalized 
intersections on urban multilane undivided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Mainline AADT Increases 
Percentage of households with ≥2 vehicles Decreases 
Annual average winter minimum temperature Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Percentage of population ages 45–64 Decreases 
Percentage of households with income <$50,000 Decreases 
Percentage of households with 0 vehicles Increases 
Percentage of households with 1 vehicle Decreases 
Percentage of population ages 16–24 working full time Increases 
Speed limit Increases 
Number of channelized left-turn lanes Increases 

Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes at four-leg signalized intersections on urban multilane undivided 
roads: 

• Mainline AADT: an increase in mainline AADT was associated with an increase in the 
frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads in Ohio. 

• Speed: an increase in speed limit was consistently associated with an increase in the 
frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads in Ohio. 
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There were additional roadway variables that showed relationships with ANG crash frequency, 
but results were inconsistent or could not be validated across the two States due to data 
limitations: 

• Cross street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads in Ohio (the relationship was opposite for ANG-D crashes at four-leg 
signalized intersections on urban multilane undivided roads in California). 

• Lane width: an increase in lane width was associated with a decrease in the frequency of 
ANG-KAB-D crashes at four-leg signalized intersections on urban multilane undivided 
roads in California. 

• Cross street right-turn channelization: presence of right-turn channelization on cross 
street was associated with a decrease in the frequency of ANG-KAB-D crashes at four-leg 
signalized intersections on urban multilane undivided roads in California. 

With respect to sociodemographic characteristics, two factors showed a relationship to ANG 
crashes in California and Ohio: 

• The percentage of the population ages 45–64 appeared to decrease ANG-KAB-D crashes 
at four-leg signalized intersections on urban multilane undivided roads in California and 
ANG-KABCO-D crashes at four-leg signalized intersections on urban multilane 
undivided roads in Ohio. 

• The percentage of households with no vehicles appeared to increase ANG-KAB-D and 
ANG-KABCO-D crashes at four-leg signalized intersections on urban multilane 
undivided roads in Ohio. The percentage of households with one vehicle appeared to 
decrease those same crash types. 

With respect to weather characteristics, the research did not produce any contributing factors. 

ANG CRASHES AT THREE-LEG STOP-CONTROLLED INTERSECTIONS ON 
RURAL TWO-LANE ROADS 

California 

Daytime 

Table 78 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at three-leg stop-controlled intersections on rural two-lane roads that result in fatality, 
incapacitating injury, or nonincapacitating injury (ANG-KAB-D) according to random forests 
generated using California data. 
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Table 78. Contributing factors for ANG-KAB-D crashes at three-leg stop-controlled 
intersections on rural two-lane roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Mainline AADT Increases 
Percentage of households with 1 vehicle Decreases 
Annual average maximum temperature Increases 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

Decreases 

Percentage of households with income >$100,000 Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases 
Annual average minimum temperature Decreases 
Percentage of population ages 25+ with a university degree Decreases 
Annual average winter minimum temperature Decreases 
Percentage of households with ≥2 vehicles Increases 

Ohio 

Daytime 

Table 79 and table 80 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at three-leg stop-controlled intersections on rural two-lane roads that result in 
fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. 

Table 79. Contributing factors for ANG-KAB-D crashes at three-leg stop-controlled 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of population ages 16–24 working part time Increases 
Curve radius Increases/decreases* 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 25+ without a high school diploma Decreases 
Percentage of households with ≥2 vehicles Increases 
Percentage of population ages 16–24 working full time Increases 
Percentage of population ages 16–24 unemployed Decreases 
Mainline AADT Increases 
Percentage of population ages 65–74 Decreases 
Lane width Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
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Table 80. Contributing factors for ANG-KABCO-D crashes at three-leg signalized 
intersections on rural two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Mainline AADT Increases 
Percentage of households with ≥2 vehicles Decreases 
Percentage of households with income between $50,000 and $100,000 Increases 
Percentage of households with income <$50,000 Decreases 
Lane width Increases 
Percentage of households with 0 vehicles Increases 
Average annual rainfall total Decreases 
Percentage of population ages 25+ without a high school diploma Increases 
Percentage of population ages 20–44 Increases 
Annual average number of days with a minimum temperature of ≤32℉ Increases 
Cross street AADT Increases 
Speed limit Decreases** 
Percent grade Decreases** 
Curve radius Increases/decreases* 

*Increases crash frequency when comparing curves to highway tangent segments/decreases crash frequency when 
comparing curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

Discussion 

Based on the analysis, the research team recommends the following contributing roadway factors 
associated with ANG crashes at three-leg stop-controlled intersections on rural two-lane roads: 

• Mainline AADT: an increase in mainline AADT was consistently associated with an 
increase in the frequency of ANG-D crashes at three-leg stop-controlled intersections on 
rural two-lane roads. 

There were additional roadway variables that showed relationships with ANG crash frequency, 
but results were inconsistent or could not be validated across the two States due to data 
limitations: 

• Cross Street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-KABCO-D crashes at three-leg stop-controlled intersections on 
rural two-lane roads in Ohio. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of ANG-D crashes (and therefore a decrease in curve radius was 
consistently associated with an increase in the frequency of ANG crashes) at three-leg 
stop-controlled intersections on rural two-lane roads in Ohio. 

• Lane width: an increase in lane width was associated with an increase in the frequency of 
ANG-D crashes at three-leg stop-controlled intersections on rural two-lane roads in Ohio. 

• Speed: an increase in speed limit was associated with an increase in the frequency of 
ANG-KAB-D crashes at three-leg stop-controlled intersections on rural two-lane roads 
in Ohio (the relationship was opposite for ANG-KABCO-D crashes at three-leg 
stop-controlled intersections on rural two-lane roads in Ohio). 
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With respect to sociodemographic characteristics, the percentage of households with two or more 
vehicles appeared to increase ANG-KAB-D crashes at three-leg signalized intersections on rural 
two-lane roads in California and Ohio. 

The following also appeared with respect to ANG crashes in California and Ohio: 

• The percentage of the population ages 16–24 that is unemployed appeared to decrease 
ANG-KAB-D crashes at three-leg stop-controlled intersections on rural two-lane roads in 
Ohio. 

• The percentage of households with income between $50,000 and $100,000 appeared to 
increase ANG-D crashes at three-leg stop-controlled intersections on rural two-lane roads 
in Ohio. The percentage of households with income <$50,000 appeared to decrease those 
same crash types. 

With respect to weather characteristics and ANG cashes, average annual rainfall totals appeared 
to decrease ANG-KABCO-D crashes at three-leg stop-controlled intersections on rural two-lane 
roads in Ohio. 

ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL 
MULTILANE DIVIDED ROADS 

California 

Daytime 

Table 81 summarizes the most influential predictor variables for the expected number of ANG-D 
crashes at four-leg stop-controlled intersections on rural multilane divided roads that result in 
fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) according to random 
forests generated using California data. 

Table 81. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on rural multilane divided roads: California. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Percentage of population ages 16+ unemployed Decreases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 20–44 Decreases 
Median width Increases 
Average annual snowfall total Decreases 
Percentage of households with income <$50,000 Decreases 
Percentage of population ages 16–24 unemployed Decreases 
Annual average winter minimum temperature Increases 
Percentage of population ages 15–19 Increases 
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Ohio 

Daytime 

Table 82 and table 83 summarize the most influential predictor variables for the expected number 
of ANG-D crashes at four-leg stop-controlled intersections on rural multilane undivided roads 
that result in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. 

Table 82. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on rural multilane divided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Speed limit Decreases** 
Mainline AADT Increases 
Cross street AADT Decreases** 
Average annual snowfall total Increases 
Annual average maximum temperature Decreases 
Percentage of households with income between $50,000 and $100,000 Decreases 
Average annual rainfall total Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 16–24 unemployed Increases 
Percentage of population ages 25+ with a university degree Decreases 

**Counterintuitive finding. 

Table 83. Contributing factors for ANG-KABCO-D crashes at four-leg stop-controlled 
intersections on rural multilane divided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Speed limit Decreases** 
Mainline AADT Increases 
Percentage of households with income >$100,000 Increases 
Percentage of population ages 16+ unemployed Increases 
Number of channelized left-turn lanes Increases 
Average annual snowfall total Increases 
Percentage of population ages 25+ with a university degree Increases 
Annual average maximum temperature Increases 
Percentage of population ages 16–24 working full time Decreases 

**Counterintuitive finding. 
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Discussion 

Based on the analysis, the research team recommends only one contributing roadway factor 
associated with ANG crashes at four-leg stop-controlled intersections on rural multilane divided 
roads: 

• Mainline AADT: an increase in mainline AADT was consistently associated with an 
increase in the frequency of ANG-D crashes at four-leg stop-controlled intersections on 
rural multilane divided roads in Ohio. 

There were additional roadway variables that showed relationships with ANG crash frequency, 
but results were inconsistent or could not be validated across the two States due to data 
limitations: 

• Cross street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-KAB-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads in California and ANG-KABCO-D crashes at four-leg 
stop-controlled intersections on rural multilane divided roads in Ohio (the relationship 
was opposite for ANG-KAB-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads in Ohio). 

• Median width: an increase in median width was associated with an increase in the 
frequency of ANG-KAB-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads in California. 

• Speed: an increase in speed limit was associated with a decrease in the frequency of ANG 
crashes at four-leg stop-controlled intersections on rural multilane divided roads in Ohio. 
This finding was opposite of reported speed effects on other intersection FCFTs. 

With respect to sociodemographic characteristics, the percentage of households with income 
>$100,000 appeared to increase ANG-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads in California and Ohio. 

With respect to weather characteristics, the research did not produce any contributing factors. 

PEDESTRIAN CRASHES 

This section includes an overview based on information from related published literature of 
contributing factors for pedestrian crashes. 

Specifically, a study by Thomas et al. (2017) looked at identifying and screening intersection 
locations with the potential for future pedestrian crashes and injuries to help Seattle, WA, 
broaden treatment priorities beyond high crash locations. The methodology used was similar to 
this current project, as they used random forests to identify potential contributing factors for 
pedestrian crashes. 

Thomas et al. (2017) evaluated the following pedestrian crash types: 

• All pedestrian crashes at intersections. 
• Pedestrians crossing at intersections and struck by motorists going straight. 
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The categorical roadway variables used by Thomas et al. (2017) for inputs to the random-forest 
analysis included the following: 

• Highest arterial class for intersection approaches. 
• Type of traffic control at intersection. 
• Presence of a mini-roundabout at the intersection. 
• Total number of motor vehicle lanes on the largest approach leg. 
• Number of through motor-vehicle lanes of all types present on the largest leg of the 

intersection. 
• Number of legs present at the intersection. 
• Number of legs at the intersection that are local streets. 
• Total number of motor-vehicle travel lanes for all legs at the intersection. 
• Sum of through motor-vehicle travel lanes on all legs at the intersection. 
• Presence of parking on any legs of the intersection. 
• Presence of bus-only lanes on any approach. 
• Presence of painted or raised medians on any approach. 
• Presence of right-turn lanes on any approach. 
• Presence of left-turn lanes on any approach. 
• Presence of two-way left-turn lanes on any approach. 
• Presence of bike lanes on any approach. 
• Presence of any type of two-way bicycle track. 
• Presence of bicycle shared-lane markings on any approach. 
• Presence of a shared-use path crossing at the intersection. 

Different measures of exposure and scale factors used by Thomas et al. (2017) for inputs to the 
random-forest analysis included the following: 

• Estimated annual average daily bicycle volume at intersection. 
• Estimated annual average daily pedestrian (AADP) volume at intersection. 
• Presence of one of more K–12 schools within 0.25 mi of the intersection. 
• Presence of university campus within 0.25 mi of the intersection. 
• Mean income within 150 ft of the intersection. 
• Total population within 0.10 mi of the intersection. 
• Total employment within 0.25 mi of the intersection. 
• Number of commercial properties within 0.10 mi of the intersection. 
• Proportion of population ages 65+ within 0.25 mi of the intersection. 
• Proportion of population ages 18 and younger within 0.25 mi of the intersection. 
• Network distance (in miles) to the nearest university campus. 
• Maximum percent slope on any approach. 
• Average slope of terrain within 0.50 mi surrounding the intersection. 
• Number of buses/trains stopping within 150 ft of the intersection on a typical weekday. 
• All building volume (height × area) within 0.10 mi of the intersection. 
• Commercial building volume (height × area) within 0.10 mi of the intersection. 
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Table 84 and table 85 provide the most influential predictor variables and their direction of effect 
as identified by Thomas et al.’s framework (2017). 

Table 84. Contributing factors for all pedestrian crashes at intersections. 

Variable 
Impact on Crash-Frequency 

Predictions 
Number of commercial properties within 0.10 mi of the intersection Increases 
Number of buses/trains stopping within 150 ft of the intersection on a typical 
weekday 

Increases 

All building volume (height × area) within 0.10 mi of the intersection Increases 
AADP volume Increases 
Commercial building volume (height × area) within 0.10 mi of the intersection Decreases 
Number of legs at the intersection that are local streets  Decreases 
Mean income within 150 ft of the intersection Decreases 
Average slope of terrain within 0.50 mi surrounding the intersection Decreases 
Total population within 0.10 mi of the intersection Increases 
Presence of traffic signal Increases 
Number of legs present at the intersection Increases 
Total number of motor-vehicle travel lanes for all legs at the intersection Increases 
Total number of motor-vehicle lanes on the largest approach leg Increases 
Highest arterial class entering the intersection Increases 
Presence of parking on any legs of the intersection Increases 

Table 85. Contributing factors for pedestrians crossing at intersections and struck by 
motorists going straight. 

Variable 
Impact on Crash-Frequency 

Predictions 
Number of commercial properties within 0.10 mi of the intersection Increases 
Number of buses/trains stopping within 150 ft of the intersection on a typical 
weekday  

Increases 

All building volume (height × area) within 0.10 mi of the intersection Increases 
AADP volume Increases 
Commercial building volume (height × area) within 0.10 mi of the intersection Decreases 
Number of legs at the intersection that are local streets Decreases 
Mean income within 150 ft of the intersection Decreases 
Presence of traffic signal Increases 
Number of legs present at the intersection Increases 
Total number of motor-vehicle lanes on the largest approach leg Increases 
Highest arterial class entering the intersection Increases 

As can be seen from table 84 and table 85, the following variables were identified as factors 
contributing to potential increases in both types of pedestrian crashes: 

• Number of commercial properties within 0.10 mi of the intersection. 
• Number of buses/trains stopping within 150 ft of the intersection on a typical weekday. 
• All building volume (height × area) within 0.10 mi of the intersection. 
• Estimated AADP volume at intersection. 
• Presence of traffic signal at the intersection. 
• Number of legs present at the intersection. 
• Total number of motor-vehicle travel lanes for all legs at the intersection. 
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The analyses results presented throughout this chapter, along with the review of a previously 
conducted pedestrian crash analysis by Thomas et al. (2017), provide insights to key 
contributing factors for FCFTs. This information served as the basis for developing a 
countermeasure-selection process, which is presented in the next chapter. While the analyses 
uncovered contributing factors related to traffic, roadway, socioeconomic, and weather 
characteristics, the countermeasure-selection process is focused on the traffic and roadway 
findings. Findings linked to socioeconomic- and weather-related factors show promise, but there 
is not yet a significant amount of theory to support or refute the socioeconomic- and 
weather-related results.
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CHAPTER 6. COUNTERMEASURE-SELECTION PROCESS 

In addition to identifying contributing factors for FCFTs (presented in chapter 5), another 
objective of this project was to use the contributing-factor findings to assist safety practitioners in 
making informed choices regarding countermeasures to address the focus crash types. This 
chapter describes a process other practitioners can use to identify potential countermeasures for 
each set of focus crash types. The process is accompanied by several examples to demonstrate the 
steps for various crash types and provide a list of countermeasures identified for those crash 
types. The chapter concludes with the countermeasures that address the FCFTs and contributing 
factors covered in chapter 4 and chapter 5. The overview includes multiple potential 
countermeasures for intersection and nonintersection FCFTs, respectively, for consideration by 
State and local transportation agencies as part of an approach to systemic road-safety 
management. 

This process recognizes that, although there are certain contributing factors associated with focus 
crash types, selecting countermeasures must be broad and encompass many options for 
addressing the crash type. The usefulness of the contributing-factor identification is to allow a 
practitioner to identify which countermeasures specifically address those factors as a part of their 
safety effectiveness and also to prioritize locations for countermeasures. This identification and 
prioritization of countermeasures may in turn raise the priority for selecting and implementing 
those countermeasures. In addition, the contributing factors will inform practitioners’ decisions 
about where to implement the selected countermeasures as part of their systemic 
safety-management efforts. The following six steps detail the countermeasure-selection process: 

1. Identify a focus crash type. 
2. Identify contributing factors for the focus crash type. 
3. Assemble a list of potential countermeasures that address the focus crash type. 
4. Identify countermeasures that address the contributing factors associated with the focus 

crash type. 
5. Identify countermeasures with CMFs. 
6. Select a countermeasure. 

BACKGROUND RELEVANT TO COUNTERMEASURE SELECTION 

Chapter 4 and chapter 5 provided tables of the most influential predictor variables and identified 
them as factors contributing to increases or decreases in potential future crashes. A brief 
discussion on similarities between the results across States and recommended contributing factors 
for systemic safety analysis based on these results accompanied the tables. 

The research team conducted a contributing-factor analysis for the expected crash frequencies of 
KABCO crashes using Ohio data and compared results to those for KAB crashes in Ohio. Results 
from the contributing-factor analysis were quite similar when using either the KAB or KABCO 
severities. In almost all cases, the most influential predictor variables stayed consistent between 
the KAB and KABCO groupings, except for some changes in the percent increase of predictions 
of MSEs associated with removal of the variables. 
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The following sections summarize prevalent factors from each main category of factors explored 
in this analysis: roadway, socioeconomic, and climate. 

Roadway Variables 

Recommended roadway variables for contributing-factor analysis from intersection and 
nonintersection FCFT categories are as follows: 

• Intersection: 
o Mainline AADT. 
o Cross street AADT. 
o Speed. 
o Lane width. 
o Curve radius. 

• Nonintersection: 
o Average AADT. 
o Percent grade. 
o Curve radius. 
o Shoulder width. 

A secondary set of roadway factors that also generally showed consistent results and could be 
presented as contributing factors include the following: 

• Surface width (wider surface widths decreased predicted crash frequency). 
• Unpaved shoulders or no shoulders (the presence of one or more unpaved shoulders or no 

shoulders increased predicted crash frequency compared to the presence of two paved 
shoulders). 

• Terrain (rolling and mountainous terrain increased predicted crash frequency). 
• Left- and right-turn channelization (the presence of left- and right-turn channelization at 

intersections decreased predicted crash frequency). 

There were some counterintuitive results where a variable was expected to increase crash 
frequency and instead appeared to decrease crash frequency or vice versa. The majority of these 
counterintuitive results were related to percent grade, shoulder width, speed, and cross street 
AADT. The percentage of trucks on the roadway was another variable that was expected to 
increase crashes but consistently came up as a factor expected to decrease crashes. This finding 
was not identified as counterintuitive due to the fact that there have been studies conducted in the 
past by Milton and Mannering (1998), Lord et al. (2005), and Milton et al. (2008) that support 
this finding. Milton and Mannering (1998) looked at the relationship among highway geometrics, 
traffic-related elements, and motor vehicle–accident frequencies using Washington data. They 
concluded that an increase in the percentage of both single-unit trucks and all trucks was 
associated with lower accident frequency. Lord et al. (2005) concluded that an increase in the 
percentage of trucks was associated with a reduction in the number of rear-end and ROR crashes. 
Milton et al. (2008) concluded that an increase in percentages of trucks tends to lower the 
possible amount of injury crashes. 
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In most cases, counterintuitive findings would show up in the expected direction (i.e., increasing 
or decreasing crashes) when using data from a different State. For example, average shoulder 
width came up as a factor contributing to increases in LNDP-N crashes on rural two-lane roads 
when using Washington data. However, the same factor showed as contributing to a decrease in 
crash frequency (as expected) for LNDP-N crashes on rural two-lane roads when using Ohio data. 

Counterintuitive findings could happen for various reasons. One possible reason could be the 
application of some other treatments for which data were not available for the analysis. Another 
possible reason could be the completeness of data. For example, the research team had the 
information for shoulder widths for Washington; however, information regarding paved and 
unpaved shoulder widths was not available. 

Socioeconomic Variables 

There were some interesting findings regarding socioeconomic variables. The following variables 
showed as most influential for intersection and nonintersection FCFT categories: 

• Percentage of population ages 16–24 working full time (generally appeared to decrease 
segment crashes with one occurrence of increasing intersection crashes). 

• Percentage of population ages 16–24 working part time (generally appeared to decrease 
segment crashes). 

• Percentage of households with income <$50,000 (consistently appeared to decrease all 
crash types, except for crashes at urban signalized intersections). 

• Percentage of households with income >$100,000 (consistently appeared to increase 
crashes). 

• Percentage of population ages 16–24 that is unemployed (consistently appeared as a 
predictive factor, but whether it was expected to increase or decrease crashes varied by 
FCFT). 

• Percentage of population ages 15–19 (consistently expected to increase ROR, HEO, and 
ROLL crashes, particularly on horizontal curves). 

The research team did not recommend any of the socioeconomic variables for systemic safety 
analysis due to limitations in the data-linkage approach and scarcity of prior research linking 
these variables to crashes at segment and intersection levels. However, these variables showing 
up among the most influential predictor variables does provide a basis for future research to 
explore these as potential contributing factors for systemic analysis efforts. Likely, the variable 
with the strongest theoretical basis would be the percentage of the population ages 15–19 as a 
factor contributing to increased ROR, HEO, and ROLL crashes on rural roads. 
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Climate Variables 

As with the socioeconomic variables, there were some interesting findings regarding climate 
variables. The following variables showed as most influential for intersection and nonintersection 
FCFT categories: 

• Average annual snowfall totals (generally appeared to increase crashes). 
• Average annual rainfall totals (generally appeared to increase crashes). 
• Average annual number of days with a minimum temperature of ≤32℉ (generally to 

decrease crashes). 

The research team did not recommend any of the climate variables for systemic safety analysis 
due to scarcity of prior research linking these variables to crashes and some of the inconsistencies 
in the directions (i.e., increasing or decreasing crashes) of the effects. However, these variables 
showing up among the most influential predictor variables in some cases does provide a basis for 
future research to explore them as potential contributing factors. 

The following sections describe the steps of a countermeasure-selection process for FCFTs based 
on traffic- and roadway-related contributing factors. The traffic- and roadway-related contributing 
factors identified in this process can inform the selection and implementation of countermeasures 
as a part of a systemic safety analysis. The steps include (1) identifying a focus crash type, 
(2) identifying contributing factors for the focus crash type, (3) assembling a list of potential 
countermeasures that address the focus crash type, (4) identifying countermeasures that address 
the contributing factors associated with the focus crash type, (5) identifying countermeasures with 
CMFs, and (6) selecting a countermeasure. 

STEP 1. IDENTIFY A FOCUS CRASH TYPE 

Approach 

Identify the focus crash type of interest. Using the FCFT definitions from chapter 5, the focus 
crash type is defined by the type of maneuver (e.g., ROR), time of day (daytime versus 
nighttime), and type of segment (curve versus tangent) or type of intersection (e.g., four-leg 
signalized). Selecting a focus crash type should be done according to the priorities of the 
transportation agency (e.g., as outlined in a State or regional SHSP) and based on an analysis of 
available data. These methods may include the following: 

• Jurisdiction-wide analysis of crash data to identify overrepresented crash types. 
• Site-level analysis to determine overrepresented crash types or crash types in excess of the 

expected performance at a specific site (i.e., through crash-predictive methodologies). 
• Systemic safety analysis of a network to identify crash types that represent the greatest 

number of KA crashes across the system being analyzed. 

Example 

Based on data analysis, an agency selected the following focus crash type: ROR-D crashes on 
curves. The agency conducted an analysis using the approach detailed in chapter 4 and found KA 
crashes of this type to be particularly prevalent on rural two-lane roads. 
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STEP 2. IDENTIFY CONTRIBUTING FACTORS FOR THE FOCUS CRASH TYPE 

Approach 

Using the results of this project (chapter 7), identify contributing factors associated with the focus 
crash type. Some factors may be expected to increase a particular crash type, such as the presence 
of an unpaved shoulder, whereas others may decrease certain crash types, such as increasing 
(i.e., flattening) the radius of a horizontal curve. 

Example 

Given the selected focus crash type of ROR-D crashes on curves, the results of the agency’s 
analysis showed that contributing factors for this crash type (ROR-D crashes on curves) were as 
follows: 

1. Percent grade (as grade increases, crash potential increases). 
2. Average shoulder width (as shoulder width increases, crash potential decreases). 

STEP 3. ASSEMBLE A LIST OF POTENTIAL COUNTERMEASURES THAT 
ADDRESS THE CRASH TYPE 

Approach 

Use countermeasure resources to assemble a list of potential countermeasures that may address 
the focus crash type. Such resources may include the following: 

• NCHRP Report 500 Series (National Academy of Sciences 2003a, 2003b, 2003c, 2003d, 
2003e, 2003f, 2004a, 2004b, 2004c, 2004d, 2004e, 2004f, 2004g, 2005a, 2005b, 2005c, 
2006, 2007, 2008a, 2008b, 2008c, 2008d, 2009). 

• HSM (AASHTO 2010). 
• CMF Clearinghouse (FHWA 2018a). 
• FHWA Proven Safety Countermeasures (FHWA 2017a). 
• Countermeasures That Work (Goodwin et al. 2013). 
• PEDSAFE (FHWA 2018f). 
• BIKESAFE (FHWA 2018g). 
• State-generated list of common countermeasures within a State (i.e., a toolbox). 

This assembled list should contain a wide pool of potential countermeasures. Eligible 
countermeasures should address any part of the focus crash type. For example, if the focus crash 
type is ROR-N crashes on curves, a countermeasure that addresses ROR crashes should be 
considered eligible even if it does not specifically address curve locations or nighttime 
conditions. 
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Example 

Given the selected focus crash type (ROR-D crashes on curves) and an examination of the 
previously listed countermeasure resources, the agency identified the following countermeasures 
as eligible for consideration: 

• Install shoulder rumble strips. 
• Install centerline rumble strips. 
• Widen lanes. 
• Enhance curve delineation (e.g., add chevrons, large arrows, or delineators on guardrails). 
• Install or improve curve warning signs (e.g., add flashing beacons). 
• Install warning arrows on the pavement prior to the curve. 
• Install pavement markings to decrease speed prior to the curve. 
• Flatten horizontal curves (i.e., increase the curve’s radius). 
• Flatten vertical curves (i.e., decrease the curve’s grade). 
• Enhance pavement markings (e.g., add edgelines). 
• Install skid-resistant pavement or improve pavement friction. 
• Widen paved shoulders. 
• Pave shoulders. 
• Install SafetyEdge. 
• Design safer slopes and ditches to prevent ROLLs. 
• Remove/relocate objects in hazardous locations. 
• Delineate roadside objects. 
• Improve the design of roadside hardware (e.g., bridge rails). 
• Improve the design and application of barrier and attenuation systems. 

STEP 4. IDENTIFY COUNTERMEASURES THAT EXPLICITLY ADDRESS 
CONTRIBUTING FACTORS ASSOCIATED WITH THE FOCUS CRASH TYPE 

Approach 

Compare the information known about each countermeasure on the list from step 3 to the 
contributing factors identified in step 2. Identify countermeasures that specifically address one or 
more contributing factors. The degree to which countermeasures address contributing factors is 
subjective; a logical link should be drawn between many countermeasures and contributing 
factors. For the purpose of this process, only clear, explicit relations to contributing factors should 
be indicated. 

Example 

The agency used table 86 to summarize which countermeasures address the identified 
contributing factors for the focus crash type (ROR-D crashes on curves). 



 

121 

Table 86. Example selection process: countermeasure summary with contributing factors. 

Countermeasure 
Factor 1: Percent 

Grade 
Factor 2: Average 
Shoulder Width 

Install shoulder rumble strips — — 
Install centerline rumble strips — — 
Widen lanes — — 
Enhance curve delineation (e.g., add chevrons, large arrows, or 
delineators on guardrails) 

— — 

Install or improve curve warning signs (e.g., add flashing beacons) — — 
Install warning arrows on the pavement prior to the curve — — 
Install pavement markings to decrease speed prior to the curve — — 
Flatten horizontal curves (i.e., increase radius) — — 
Flatten vertical curves (i.e., decrease grade) Y — 
Enhance pavement markings (e.g., add edgelines) — — 
Install skid-resistant pavement or improve pavement friction — — 
Widen paved shoulder — Y 
Pave shoulder — Y 
Install SafetyEdge — — 
Design safer slopes and ditches to prevent ROLLs — — 
Remove/relocate objects in hazardous locations — — 
Delineate roadside objects — — 
Improve the design of roadside hardware (e.g., bridge rails) — — 
Improve the design and application of barrier and attenuation systems — — 

—No data available. 
Y = contributing factor is addressed by the countermeasure. 

STEP 5. IDENTIFY COUNTERMEASURES WITH CMFS 

Approach 

Use CMF resources to determine which countermeasures on the list from step 3 have established 
CMFs that quantify the safety effect. This is a critical part of the process as the systemic approach 
consists of widely implementing low-cost, proven countermeasures to achieve safety benefits 
across a large portion of the system. A countermeasure with a known effect can also be compared 
to other countermeasures in a prioritized selection and used to generate a B/C analysis of 
proposed alternatives. It is possible that countermeasures for which a robust set of CMFs are 
available may have CMFs that specifically address the focus crash type. If this is the case, extra 
consideration should be given to these countermeasures in the final selection. 

The most comprehensive and accessible resource for CMF information is the CMF Clearinghouse 
(FHWA 2018a). Other resources for CMF information may include State-specific CMF lists 
(FHWA 2018b). 

Example 

The agency used table 87, which expands on table 86, to show which countermeasures have 
CMFs available for ROR crashes. 
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Table 87. Example selection process: countermeasure summary with contributing factors 
and CMF indicators. 

Countermeasure 

Factor 1: 
Percent 
Grade 

Factor 2: 
Average 
Shoulder 

Width 
CMF 

Available 
Install shoulder rumble strips — — Y 
Install centerline rumble strips — — Y 
Widen lanes — — Y 
Enhance curve delineation (e.g., add chevrons, large arrows, or 
delineators on guardrails) 

— — Y 

Install or improve curve warning signs (e.g., add flashing beacons) — — Y 
Install warning arrows on the pavement prior to the curve — — — 
Install pavement markings to decrease speed prior to the curve — — — 
Flatten horizontal curves (i.e., increase radius) — — Y 
Flatten vertical curves (i.e., decrease grade) Y — Y 
Enhance pavement markings (e.g., add edgelines) — — Y 
Install skid-resistant pavement or improve pavement friction — — Y 
Widen paved shoulder — Y Y 
Pave shoulder — Y Y 
Install SafetyEdge — — Y 
Design safer slopes and ditches to prevent ROLLs — — Y 
Remove/relocate objects in hazardous locations — — Y 
Delineate roadside objects — — — 
Improve the design of roadside hardware (e.g., bridge rails) — — — 
Improve the design and application of barrier and attenuation 
systems 

— — Y 

—No data available. 
Y = contributing factor is addressed by the countermeasure or a CMF is available for the countermeasure. 

STEP 6. SELECT A COUNTERMEASURE 

Approach 

Select a countermeasure to address the focus crash type. This selection should use the pool of 
eligible countermeasures generated in step 3, and how well each countermeasure addresses the 
specific contributing factors for the focus crash type (as determined in step 4) and the extent to 
which CMFs are available for each countermeasure (as determined in step 5) should be 
considered. 

Example 

The agency referenced CMF resources and found that many of the countermeasures on the list 
from step 3 have CMFs that quantify the safety effect. Among these countermeasures, the agency 
determined that those related to paving the shoulder or widening the paved shoulder explicitly 
address the contributing factor of average shoulder width. Additionally, the agency concluded 
that the countermeasure of flattening a vertical curve to decrease the grade was also related to the 
contributing factor of percent grade. The agency first considered vertical curve flattening as it 
could be more effective and address an underlying design issue. However, the agency determined 
that flatting vertical curves would be expensive and decided that it would not be feasible given 
the agency’s existing budget constraints. 
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The agency decided that the most appropriate countermeasure to address the focus crash type 
(ROR-D crashes on curves) based explicitly on the contributing factors was paving the shoulder 
or widening the paved shoulder. Alternatively, the agency recognized that it could select a 
countermeasure in table 87 and then use the contributing factors for ROR crashes to identify 
candidate locations at which to install the countermeasure using a systemic approach. 

ADDITIONAL EXAMPLES 

This section includes two additional hypothetical examples that demonstrate the process of 
selecting countermeasures to address focus crash types. 

Example 1: HEO Crashes 

Complete step 1: identify the focus crash type. An agency determined a focus crash type of 
HEO-D crashes on horizontal curves. The agency used a crash-tree diagram, as suggested in 
FHWA’s Systemic Safety Project Selection Tool, to help identify facility types associated with the 
focus crash type. The agency determined that severe HEO-D crashes are particularly prevalent on 
rural two-lane roads. 

Complete step 2: identify contributing factors for the focus crash type. Given the selected focus 
crash type and using the results of this project (chapter 7), the agency determined that the 
contributing factor for this focus crash type is curve radius (as curve radius increases, predicted 
crash frequency decreases). 

Complete step 3: assemble a list of potential countermeasures that address the focus crash type. 
Given the selected focus crash type and an examination of countermeasure resources, the agency 
arrived at the list of potential countermeasures in table 88. 

Complete step 4: identify countermeasures that address the contributing factors associated with 
the focus crash type. The agency identified countermeasures that address the contributing factors 
associated with the focus crash type by comparing the information known about each 
countermeasure on the list from step 3 to the contributing factor identified in step 2. The agency 
used the information in table 88, which summarizes which countermeasures address the identified 
contributing factors for the focus crash type. The agency determined that the only countermeasure 
that will address the contributing factor of curve radius is flatten horizontal curve.  

Complete step 5: identify countermeasures with CMFs. The agency identified which 
countermeasures have CMFs using CMF resources, such as the CMF Clearinghouse or 
State-specific CMF lists (FHWA 2018a). The agency used table 88 to show which 
countermeasures have CMFs available for HEO crashes. 

Complete step 6: select a countermeasure. The agency found that many of the countermeasures in 
table 88 have CMFs that quantify the safety effect of the countermeasure. From this pool of 
potential countermeasures, the agency determined in step 4 that only one countermeasure 
(flatten curve radius) explicitly addressed the contributing factor of curve radius. Thus, this 
countermeasure could be one possible selection to address the focus crash type. However, if the 
agency determined it could not afford the high cost of realigning horizontal curves, it could 
instead implement one or more of the other countermeasures identified in table 88, particularly 
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those with known CMFs, such as pavement friction or curve delineation. In such cases, the 
agency could select other countermeasures and then use the contributing factors for HEO crashes 
to identify candidate locations at which to install the countermeasures using a systemic approach. 

Table 88. Countermeasure summary for example 1: HEO crashes. 

Countermeasure 
Factor 1: Curve 

Radius CMF Available 
Install centerline rumble strips — Y 
Install profiled thermoplastic stripes for the centerline — 

 

Widen lanes — Y 
Install center two-way left-turn lanes — Y 
Reallocate lane and shoulder width to include a narrow buffer median — — 
Install passing relief lanes, alternating passing lanes or four-lane sections at 
key locations 

— Y 

Enhance curve delineation (e.g., add chevrons, large arrows, or delineators 
on guardrails) 

— Y 

Install or improve curve warning signs (e.g., add flashing beacons) — Y 
Install warning arrows on the pavement prior to the curve — — 
Install pavement markings to decrease speed prior to the curve — — 
Flatten horizontal curve (i.e., increase radius) Y Y 
Install skid-resistant pavement or improve pavement friction — Y 
Widen paved shoulder — Y 
Pave shoulder — Y 
Install raised median — Y 
Install cable median barrier — Y 
Install lighting — Y 

—No data available. 
Y = contributing factor is addressed by the countermeasure or a CMF is available for the countermeasure. 

Example 2: ANG Crashes 

Complete step 1: identify the focus crash type. An agency determined a focus crash type of 
ANG-N crashes at stop-controlled intersections. The agency used FHWA’s Systemic Safety 
Project Selection Tool, which outlines a process for States or local agencies to identify facility 
types associated with a focus crash type using a crash-tree diagram, to create a crash-tree diagram 
(Preston et al. 2013a). Using the diagram, the agency determined that KA crashes of this type are 
particularly prevalent on rural two-lane roads in their jurisdiction. 

Complete step 2: identify contributing factors for the focus crash type. Given the selected focus 
crash type and using the results of this project (chapter 7), the agency determined the following 
contributing factors for ANG-N crashes: 

1. Design speed (as the design speed increases, crash potential increases). 
2. Speed limit (as the speed limit increases, crash potential increases). 
3. Mainline left-turn channelization (when present, crash potential decreases). 

Complete step 3: assemble a list of potential countermeasures that address the focus crash type. 
Given the selected focus crash type and an examination of countermeasure resources, the agency 
arrived at the list of potential countermeasures in table 89. 
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Complete step 4: identify countermeasures that address the contributing factors associated with 
the focus crash type. The agency identified countermeasures that address the contributing factors 
associated with the focus crash type by comparing the information known about each 
countermeasure on the list from step 3 to the contributing factors identified in step 2. The agency 
used the information in table 89, which summarizes which countermeasures address the identified 
contributing factors for the focus crash type. 

Complete step 5: identify countermeasures with CMFs. The agency identified which 
countermeasures have CMFs using CMF resources, such as the CMF Clearinghouse or 
State-specific CMF lists (FHWA 2018a). The agency used table 89 to show which 
countermeasures have CMFs available for ANG crashes. 

Complete step 6: select a countermeasure. The agency found that many of the countermeasures in 
table 88 have CMFs that quantify the safety effect of the countermeasure. From this pool of 
potential countermeasures, the agency determined that the countermeasures of converting the 
intersection to a roundabout, installing or lengthening exclusive left-turn lanes, and providing 
offset left-turn lanes had known CMFs. The agency noted that these three countermeasures 
explicitly address the focus crash type’s contributing factors and identified them as one group of 
priority countermeasures. However, the agency also noted that it could implement one or more of 
the other countermeasures in table 89, particularly those with known CMFs associated with the 
focus crash type. In such cases, the agency could select other countermeasures and then use the 
contributing factors for ANG crashes to identify candidate locations at which to install the 
countermeasures using a systemic approach. 

Table 89. Countermeasure summary for example 2: ANG crashes. 

Countermeasure 
Factor 1: 

Design Speed 
Factor 2: 

Speed Limit 

Factor 3: 
Mainline 

Left-Turn 
Channelization 

CMF 
Available 

Replace direct left-turn design with a right 
turn/U-turn 

— — — Y 

Convert the intersection to a roundabout Y — — Y 
Install a traffic signal — — — Y 
Install or lengthen an exclusive left-turn lane — — Y Y 
Provide an offset left-turn lane — — Y Y 
Close, relocate, or restrict turns at driveways near 
intersections 

— — — — 

Provide an offset right-turn lane at an intersection — — — Y 
Provide a full-width paved shoulder in 
intersection areas 

— — — Y 

Restrict or eliminate turning maneuvers with 
signing 

— — — — 

Restrict or eliminate turning maneuvers by 
providing channelization or closing median 
openings 

— — — — 

Convert a four-leg intersection to two 
T-intersections (on a low-volume cross street) 

— — — Y 

Convert offset T-intersections to four-leg 
intersection (on a high-volume cross street) 

— — — — 

Reduce or eliminate intersection skew — — — Y 
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Countermeasure 
Factor 1: 

Design Speed 
Factor 2: 

Speed Limit 

Factor 3: 
Mainline 

Left-Turn 
Channelization 

CMF 
Available 

Improve the sight distance at an intersection — — — Y 
Install a dynamic advance intersection warning 
system 

— — — Y 

Provide an automated real-time system to inform 
drivers of the suitability of available gaps for 
making turning and crossing maneuvers 

— — — Y 

Provide intersection lighting — — — Y 
Install a splitter island on the minor-road 
approach to an intersection 

— — — — 

Provide a stop bar (or provide a wider stop bar) 
on the minor-road approach 

— — — — 

Install a larger regulatory and warning sign at the 
intersection 

— — — — 

Install transverse rumble strips on the intersection 
approach 

— — — Y 

Provide dashed markings (i.e., extended left 
edgelines) for major-road continuity across the 
median opening at a divided highway intersection 

— — — — 

Provide a supplementary stop sign mounted over 
the roadway 

— — — — 

Install a double stop sign — — —  Y 
Provide a pavement marking with a 
supplementary message, such as stop ahead 

— — — Y 

Install a flashing beacon at stop-controlled 
intersection 

— — — Y 

Replace a standard stop sign with a flashing LED 
stop sign 

— — — Y 

Convert a two-way intersection to an all-way 
stop-controlled intersection 

— — — Y 

Provide traffic calming on an intersection 
approach through a combination of geometric and 
traffic-control devices 

— — — — 

Lower speed on an intersection approach Y Y — — 
Install a median acceleration lane — — — Y 
Provide skid resistance at an intersection — — — Y 
Narrow a lane through rumble strips and a 
painted median 

— — — Y 

—No data available. 
Y = contributing factor is addressed by the countermeasure or a CMF is available for the countermeasure. 
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TARGETED COUNTERMEASURES FOR CONTRIBUTING FACTORS 

Many countermeasures have been researched and evaluated for improving highway safety. 
FHWA’s Proven Safety Countermeasures identifies a small set of these countermeasures, which 
have proven repeatedly to reduce serious injuries and fatalities (FHWA 2017a). As a result, 
FHWA encourages their widespread implementation. Other proven and recommended 
countermeasures, along with additional information on the Proven Safety Countermeasures, are 
found in FHWA’s Low-Cost Treatments for Horizontal Curve Safety (Albin et al. 2016), the 
Institute of Transportation Engineers’ Unsignalized Intersection Improvement Guide (ITE 2015), 
FHWA’s Intersection Safety website (FHWA 2015a), FHWA’s Roadway Departure Safety 
(FHWA 2017b), and FHWA’s Intersection Safety Strategies Brochure (FHWA 2015b). Table 90 
and table 91 show how the Proven Safety Countermeasures applies to various intersection and 
nonintersection contributing factors identified previously in this report. This section is not meant 
to provide complete lists of countermeasures and countermeasure resources. Instead, it is meant 
to be a quick reference and starting point for agencies interested in applying countermeasures 
using the systemic approach to common FCFTs.
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Table 90. Systemic countermeasures for intersection contributing factors. 

Countermeasure 

Smaller Curve 
Radius 

(Intersection on 
Curve) 

Wider Mainline 
Lane Width 

Wider Mainline 
Median Width 

Absence of 
Mainline 

Left-Turn 
Channelization 

Absence of Minor-
Street Right-Turn 

Channelization 
(Signalized 

Intersections) 

Design 
Speed/Higher 
Speed Limit 

Add left- and right-turn lanes — — — ● ● ● 
Increase yellow change intervals — — — — — ● 
Add backplates with 
retroreflective borders 

— ● ● — — ● 

Apply multiple low-cost 
countermeasures 

● ● ● ● ● ● 

Install advance signs ● ● ● — — ● 
—Countermeasure does not address contributing factor. 
●Countermeasure addresses contributing factor. 

Table 91. Systemic countermeasures for nonintersection contributing factors. 

Countermeasure 

Larger 
Percent 
Grade 

Narrower 
Lane Width 

Narrower 
Paved Surface 

Width 

Narrower 
Shoulder 

Width 
Unpaved 
Shoulder 

Design 
Speed/Higher 
Speed Limit 

Mountainous 
Terrain 

Smaller 
Curve 
Radius 

Install SafetyEdge ● ● ● ● ● ● — ● 
Install rumble strips/stripes — ● ● ● ● ● ● ● 
Enhance/improve friction 
for horizontal curves 

● — ● — — ● — ● 

Enhance delineation for 
horizontal curves 

— — ● — — ● — ● 

Implement roadside design 
improvements at curves 

— — — — — ● — ● 

Install advance markings 
for curves 

— ● ● ● ● ● — ● 

Advance signs — ● ● ● — ●a ● ● 
—Countermeasure does not address contributing factor. 
●Countermeasure addresses contributing factor. 
aRefer to the MUTCD for advance-warning-sign requirements based on speed differentials (FHWA 2012).
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The following sections provide brief descriptions of the countermeasures for the intersection 
contributing factors in table 90. For additional information on these countermeasures, refer to the 
Quick Reference Guide that accompanies this report (Porter et al. 2020). The CMF Clearinghouse 
provides additional intersection safety countermeasures, as well as other sources (FHWA 2018a). 

Auxiliary Turn Lanes (FHWA 2017a) 

Providing auxiliary turn lanes at intersection approaches separates slow-moving turning traffic 
from through traffic and provides vehicles space for deceleration prior to turning. With these 
improvements, auxiliary turn lanes can reduce the potential for turning vehicles to be involved in 
ANG and rear-end crashes. This treatment is recommended when there is an absence of mainline 
left-turn channelization, minor-street right-turn channelization, and a high design speed on the 
approaching roadway(s). Additionally, this treatment should be considered for major road 
approaches to intersections with minor stop control where there are operationally warranted 
turning-vehicle volumes and a history of crashes involving turning vehicles. When considering 
auxiliary turn lanes, the impact on pedestrian and bicycle safety and convenience should be 
considered. 

Yellow Change Intervals (FHWA 2017a) 

Evaluating and adjusting yellow change intervals can lead to reduced red-light-running crashes 
(which can arise from yellow change intervals that are too long) and rear-end crashes (which can 
arise from yellow change intervals that are too short). Agencies should regularly reevaluate 
yellow change intervals at all signalized intersections within their system, especially those with 
histories of rear-end crashes and red-light-running crashes. This treatment is recommended for 
intersections with high design speeds and/or speed limits on at least one approach. 

Backplates with Retroreflective Borders (FHWA 2017a) 

Adding backplates with retroreflective borders to signal heads can improve signal visibility by 
providing a contrasting background. These visibility improvements are evident in both daytime 
and nighttime conditions and can improve visibility for all drivers, especially older or color-blind 
drivers. This treatment can reduce crashes caused by signal-visibility issues, such as 
red-light-running and rear-end crashes. Contributing factors for which this treatment is 
recommended include intersections with wide mainline roadways and/or median widths, as well 
as those with high design speeds and/or speed limits on at least one approach. 

Application of Multiple Low-Cost Countermeasures (FHWA 2017a) 

Crashes can be reduced system wide by deploying a suite of low-cost countermeasures at 
multiple stop-controlled intersections. These countermeasures include improving pavement 
markings and signage. By improving the visibility of signage and pavement markings, driver 
awareness is increased and the potential for crashes due to driver inattention or confusion is 
reduced. Systemically, these improvements should be considered for all stop-controlled 
intersections and can be effective at intersections with any contributing factors. 
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Advance Signs (ITE 2015) 

Installing advanced intersection warning signs, especially for unsignalized intersections, can 
reduce intersection crashes by warning approaching drivers of intersections or intersection 
traffic-control devices for which there is limited or inadequate visibility. These signs have the 
potential to reduce right-ANG and rear-end crashes on both major and minor road approaches. 
Specific signage for various intersection configurations and traffic-control devices can be found 
in the MUTCD (FHWA 2012). Contributing factors for which these signs can be effective 
include intersections on curve radii, intersections with wide mainline roadways and/or median 
widths, and high design speeds and/or speed limits on at least one approach. 

SafetyEdge (FHWA 2017a) 

Sharp pavement drop-offs at the pavement edge can exacerbate roadway departures. Adding a 
SafetyEdge—a gradual sloped drop from the edge of the paved surface to the roadside 30 degrees 
from the cross-slope—when paving can help drivers maintain control of their vehicles when 
departing the roadway. This treatment only has minimal impact on the cost of paving or 
resurfacing projects while providing a proven reduction in roadside crash frequency and severity. 
Contributing factors for which this treatment should be considered include tight curve radii, 
narrow traveled ways and paved surfaces, narrow and/or unpaved shoulders, and high design 
speeds and/or speed limits. 

Rumble Strips or Stripes (FHWA 2017a) 

Driver inattention, whether through distraction, drowsiness, or another reason, can lead to lane 
and roadway departures, both of which can lead to crashes, often with severe outcomes arising 
from a collision with oncoming traffic or roadside fixed objects. Installing rumble strips or stripes 
along the centerline or edgeline of a roadway can provide an audible alert to drivers straying from 
the traveled way. This treatment is a low-cost and proven countermeasure that can provide 
significant benefits if installed system wide. However, agencies need to consider bicyclists when 
installing shoulder rumble strips; regular gaps to allow for bicyclists to transition between the 
traveled way and shoulder should be provided where there is regular bicycle traffic. Contributing 
factors for which this treatment should be considered include tight horizontal radii; narrow 
traveled ways, shoulder widths, and paved surfaces; high speed limits; and mountainous terrain 
(e.g., steep grades and significant vertical curvature). 

Enhanced Friction for Horizontal Curves (FHWA 2017a) 

Insufficient friction on horizontal curves can lead to crashes. If the existing pavement is unable to 
provide the required friction for cornering, vehicles may lose traction and slide, sometimes off 
the roadway or into opposing traffic. High-friction surface treatments and pavement grooving 
(for concrete pavements) have both been found to improve friction on horizontal curves and 
reduce crash frequency by modifying the existing surface of the pavement. These treatments can 
be especially effective on curves with tight radii, poor cross-slope design, poor drainage, low 
pavement friction, and a history of driving too fast for the design conditions of the curve. Of that 
list, tight curve radii and high speeds are both contributing factors that can be identified 
systemically. 
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Enhanced Delineation for Horizontal Curves (FHWA 2017a) 

Horizontal curves present a challenge to drivers in that they are a deviation from the existing 
vehicle path. Drivers who are inattentive or unable to see the change in alignment may fail to 
navigate the curve, possibly leading to KA crashes, such as ROR, fixed-object, and HEO crashes. 
Improving the delineation of the curve assists drivers with seeing and preparing for the change in 
alignment. Using one or a combination of pavement markings, post-mounded delineators, larger 
signs, more retroreflective signs, dynamic curve warning signs, and sequential curve signs can 
lead to a reduction in crash severity on a curve. Systemically, curves with small curve radii or 
high speed limits should be considered for this treatment. 

Roadside-Design Improvements at Curves (FHWA 2017a) 

Roadway departures are almost unavoidable on horizontal curves. Given the inevitability, making 
the roadside more forgiving to vehicles departing the roadway can reduce the severity of these 
events. Improvements to the roadside that have proven reliably effective include widening the 
clear zone, flattening side slopes, and paving and widening shoulders. Additionally, if the 
clear-zone width is unable to be obtained, the use of cable barriers, guardrails, or concrete 
barriers (as appropriate) can also reduce the severity of outcomes for departing vehicles. 
Contributing factors for which this treatment should be considered include tight curve radii, 
narrow shoulder widths, high speed limits, and mountainous terrain (e.g., steep grades and 
significant vertical curvature). 

Advance Markings for Curves (Albin et al. 2016) 

Various pavement markings can be used to supplement horizontal-curve treatments provided in 
FHWA’s Proven Safety Countermeasures (FHWA 2017). A speed-advisory marking can be 
painted within the travel lane to provide additional guidance in drivers’ line of sight. Optical 
speed bars spaced at gradually decreasing distances on the approach to the curve can manipulate 
drivers’ speed perception and influence them to slow down. Advisory pavement markings are 
most appropriate for curves with advisory speeds much lower than the regular posted speed limit 
on the roadway; optical speed bars are most appropriate on isolated or unexpected horizontal 
curves. Contributing factors for which this treatment should be considered include tight radii and 
high design speeds. 

Advance Signs (Albin et al. 2016) 

A low-cost treatment to improve safety on horizontal curves is the installation of static advance 
curve warning signs. Warning signs at horizontal curves include curve warning signs and 
advisory speed-limit signs. These signs make drivers aware of the impending change in 
alignment and suggested speed at which the curve should be navigated. The MUTCD provides 
guidance for the installation of these signs (FHWA 2012). Contributing factors for which static 
advance signage should be considered include steep grades and tight curve radii. 

The treatments described above and summarized in table 90 and table 91 represent a set of 
countermeasures that have been proven to successfully reduce crash frequency or severity at a 
relatively low cost, leading them to be recommended by FHWA and ITE. For more details on 
these treatments, refer to the Quick Reference Guide accompanying this report (Porter et al. 
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2020). For additional countermeasures, refer to resources such as the CMF Clearinghouse 
(FHWA 2018a).
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CHAPTER 7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The main goal of this project was to identify focus crash types, focus facility types, and 
associated contributing factors to inform applications of systemic safety improvements. To 
achieve this goal, the research team executed three main technical tasks: identifying FCFTs, 
identifying contributing factors associated with the FCFTs, and developing a process to assist 
safety practitioners in making informed choices regarding countermeasures to address the focus 
crash types. 

IDENTIFYING FCFTS 

Selecting FCFTs was guided by the use of FARS and HSIS (NHTSA 2018a; FHWA 2018c). The 
method used by the research team to select potential FCFTs was based on the number of both K 
and KA crashes associated with the combination of various crash-related variables, such as 
location, crash type, area type, roadway type, intersection type, traffic control type, lighting, and 
road alignment. A case study showed that the method employed was analogous to the steps for 
selecting FCFTs outlined in FHWA’s Systemic Safety Project Selection Tool (Preston et al. 
2013a). Its application by the research team resulted in a total of 17 FCFTs (8 intersection FCFTs 
and 9 nonintersection FCFTs) for analysis to identify contributing factors for each FCFT: 

• ROR crashes on rural two-lane roads on horizontal curves. 
• ROR crashes on rural two-lane roads on straight segments. 
• LNDP crashes on rural two-lane roads on horizontal curves. 
• LNDP crashes on rural two-lane roads on straight segments. 
• HEO crashes on rural two-lane roads on straight segments. 
• ANG crashes on rural two-lane roads on straight segments. 
• HEO crashes on rural two-lane roads on horizontal curves. 
• ROLL crashes on rural two-lane roads on straight segments. 
• ROLL crashes on rural two-lane roads on horizontal curves. 
• ANG crashes on rural two-lane roads at four-leg stop-controlled intersections. 
• ANG crashes on urban two-lane roads at four-leg stop-controlled intersections. 
• ANG crashes on urban multilane divided roads at four-leg signalized intersections. 
• ANG crashes on urban multilane undivided roads at four-leg signalized intersections. 
• ANG crashes on rural two-lane roads at three-leg stop-controlled intersections. 
• ANG crashes on rural multilane divided roads at four-leg stop-controlled intersections. 
• All pedestrian crashes at intersections. 
• Crashes involving a pedestrian crossing at an intersection struck by a motorist going 

straight. 

Original analyses conducted as part of this research was the basis for identifying contributing 
factors for crash types involving only motor vehicles. Identifying contributing factors for 
pedestrian crashes was challenging without quality exposure data. The research team explored 
additional, original analyses of pedestrian crashes using available data, but were not confident 
that a quality analysis of contributing factors could be conducted with existing data, which did 
not include pedestrian exposure and included some questionable crash-location coding. Instead, a 
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previous study by Thomas et al. (2017), which looked at identifying and screening intersection 
locations that have the potential for future pedestrian crashes, served as the basis for identifying 
contributing factors for pedestrian crashes. 

IDENTIFYING CONTRIBUTING FACTORS ASSOCIATED WITH FCFTS 

The research team defined contributing factors as factors whose presence are associated with 
increases or decreases in expected frequencies of crashes or injury severities resulting from 
crashes. The research team used random forests to identify contributing factors corresponding to 
selected FCFTs. As noted in chapter 1, a previous research effort, Highway Safety Statistical 
Paper Synthesis, demonstrated the use of CART and random forests within the context of 
conducting statistical road-safety analyses (Persaud et al. 2001). The study concluded that 
tree-based models have strong potential for effective use in road-safety analyses. This current 
project extended the exploration of potential applications of tree-based methods within the 
context of identifying contributing factors for systemic safety analysis. 

The research team used three data sources to conduct the contributing-factor analysis: crash and 
roadway inventory from HSIS, climate data from the NOAA, and socioeconomic census data 
from the U.S. Census Bureau (FHWA 2018c; NOAA 2018; U.S. Census Bureau 2018). All 
linkage of road segments to climate and census data was done in the spatial environment. To 
simplify the joining process, roadway segments were represented as point features according to 
the midpoint of the segment. For climate data, the source data were in a point file, with each 
weather station shown as a point on the map. Each roadway segment was linked to the closest 
weather station by a simple straight-line distance measurement. For census data, the source data 
were in a polygon file, with each census-block group shown as a shape on the map. Each roadway 
segment was linked to the census-block group that contained the midpoint of the segment. 

The research team used HSIS data from California and Ohio for the intersection contributing-
factor analysis and HSIS data from Ohio and Washington for the nonintersection contributing-
factor analysis. The research team conducted a detailed analysis of crash-severity groupings and 
found that the results of the contributing-factor analyses were quite similar when using either the 
frequencies of KAB or KABCO crashes. In almost all cases, the most influential predictor 
variables were consistent across the two severity levels, except for the changes in the increase of 
predictions of MSE associated with the variables. 

Table 92 lists the most prevalent factors that were found to influence expected crash frequencies 
from each of the three main categories: roadway, socioeconomic, and climate. Findings regarding 
these factors are interpreted in this project as predictive relationships or statistical associations 
with expected crash frequencies. The following characteristics raise confidence that a specific 
finding or set of findings are stable and transferable: 

• Consistency across subsets of related FCFTs. 
• Consistency across multiple States. 
• Consistency with previous findings in the literature. 
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Knowledge related to the safety impacts of traffic and roadway variables has grown substantially 
over the last two decades and offers a basis to interpret the results of this effort. In most cases, the 
traffic- and roadway-related findings were consistent with published literature and practice for 
related crash types. 

There is not yet a significant amount of theory to support or refute the socioeconomic- and 
weather-related results of this effort. Findings related to socioeconomic variables likely represent 
differences in travel behavior, driving behavior, and driving capabilities that seem key for safety 
analyses but are generally not incorporated into analyses that also include traffic and roadway 
factors. Weather-related findings likely represent differences in visibility, road conditions, and 
driver experience and behavior. In most cases, findings related to socioeconomic and weather 
variables set the stage for future analyses, possibly focused solely on these variables. 

Table 92. Most influential factors found to influence expected crash frequencies. 
Variable Category Factor 

Roadway: intersection Mainline AADT 
Roadway: intersection Cross street AADT 
Roadway: intersection Design speed/speed limit 
Roadway: intersection Lane width 
Roadway: intersection Median width 
Roadway: intersection Left-turn channelization 
Roadway: intersection Curve radius 
Roadway: nonintersection Average AADT 
Roadway: nonintersection Percent grade 
Roadway: nonintersection Curve radius 
Roadway: nonintersection Surface width 
Roadway: nonintersection Shoulder type 
Roadway: nonintersection Terrain 
Socioeconomic Percentage of population ages 16–24 working full time 
Socioeconomic Percentage of population ages 16–24 working part time 
Socioeconomic Percentage of population ages 25+ without a high school diploma 
Socioeconomic Percentage of population ages 25+ with a high school diploma but no university 

degree 
Socioeconomic Percentage of households with income <$50,000 
Socioeconomic Percentage of households with 0 vehicles 
Socioeconomic Percentage of households with 1 vehicle 
Socioeconomic Percentage of households with ≥2 vehicles 
Socioeconomic Percentage of population ages 15–19 
Socioeconomic Percentage of population ages 45–64 
Climate Average annual snowfall totals 
Climate Average annual rainfall totals 
Climate Average annual maximum temperatures 
Climate Average annual number of days with a minimum temperature of ≤32℉ 

There were some counterintuitive results where a variable was expected to increase crash 
frequency but instead was found to decrease crash frequency or vice versa. In most cases, 
counterintuitive findings would show up in only a single State. For example, increasing the 
average shoulder width appeared to increase the frequency of LNDP-N crashes on rural two-lane 
roads in Washington. However, the same increase in the average shoulder width decreased 
(as expected) the frequency of LNDP-N crashes on rural two-lane roads in Ohio. 
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Counterintuitive findings can happen for different reasons: 

• Data related to the presence and type of safety countermeasures were not available for the 
analysis. For example, an agency may apply chevrons on certain types of curves based on 
curve characteristics (e.g., crash history of a specific curve, radius of a curve). Similarly, 
an agency may have installed centerline or shoulder rumble strips on some corridors. That 
type of countermeasure information was not available to the research team for this 
analysis. 

• Details on specifics of some roadway features were not available. The research team had 
information on shoulder widths and types (i.e., paved or unpaved) for Washington. 
However, for paved shoulders, it was not clear if the complete shoulder was paved or only 
part of the shoulder was paved. Data on the nature of the roadside were also not available. 
The road safety research and practitioner communities generally believe that roadside 
design features and hazards are significantly associated with the frequency and severity of 
several of the focus crash types on rural two-lane roads. However, limitations in roadside 
data have made the ability to quantify these relationships elusive.  

• In linking census data to roadway data, there was an implicit assumption that the 
characteristics of the census block represents the characteristics of the drivers at the sites 
investigated in this project. There was no additional analysis to determine whether this 
assumption is reasonable. The findings related to the socioeconomic variables are likely 
representing some complex interaction of travel behavior, driving behavior, and driving 
capabilities. This is an area that needs additional work. 

• There is a possibility of an unexpected interaction of driver behavior with certain roadway 
factors or combinations of roadway factors that this analysis does not fully consider or 
explain. There are multiple examples of these unexpected interactions in road safety 
research, including those highlighted by Smiley (2008). 

Information about these factors could have helped further explore the counterintuitive findings. 
Without full knowledge of the reason behind such counterintuitive findings, the research team did 
not consider these findings in providing guidance on the identification of contributing factors and 
selection of countermeasures. The guidance developed for practitioners focused on traffic and 
roadway findings that were generally consistent across crash types and States, as well as with 
related literature. 

PROCESS FOR SELECTING COUNTERMEASURES 

The research team laid out a process for identifying and selecting countermeasures for focus 
crash types based on identified contributing factors. This process recognizes that, although there 
are certain contributing factors associated with focus crash types, selecting countermeasures must 
be broad and encompass many options for addressing the crash type. The usefulness of the 
contributing-factor identification is to allow a practitioner to identify which countermeasures 
specifically address those factors as part of their assessment of potential safety effectiveness. 
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This practitioner identification may in turn raise the priority for selecting and implementing those 
countermeasures. The process is laid out in the following six steps: 

1. Identify a focus crash type. 
2. Identify contributing factors for the focus crash type. 
3. Assemble a list of potential countermeasures that address the focus crash type. 
4. Identify countermeasures that address the contributing factors associated with the focus 

crash type. 
5. Identify countermeasures with CMFs. 
6. Select a countermeasure. 

Chapter 6 provides several examples to assist practitioners with implementing this process and 
descriptions of proven safety countermeasures for common crash types, facility types, and 
contributing factors. 

CONCLUSIONS AND RECOMMENDATIONS 

The following sections provide conclusions of this research and recommendations for future work 
with respect to identifying FCFTs, identifying contributing factors, and implementing and 
evaluating countermeasures applied as part of a systemic safety-management approach. 

Identifying FCFTs 

The methodology developed and applied by the research team to select potential FCFTs based on 
the number of K crashes across the United States, as well as the number of KA crashes in four 
selected States, resulted in a useful list of FCFTs. Agencies with sufficient data and analysis 
capabilities can refer to FHWA’s Systemic Safety Project Selection Tool for discussion about how 
to analyze data to identify jurisdiction-specific FCFTs (Preston et al. 2013a). Agencies with 
limited data or analysis capabilities can refer to State, regional, or local SHSPs to identify focus 
crash types based on emphasis areas. Agencies with limited data or analysis capabilities can also 
refer to the list of FCFTs developed for this research, which contribute to a significant number of 
fatalities and serious injuries across the United States and represent common priorities. 

During initial stages of this research, the research team disaggregated selected FCFTs by time of 
day (e.g., ROR-D crashes on rural two-lane roads on horizontal curves; ROR-N crashes on rural 
two-lane roads on horizontal curves). This approach was to allow the analysis to uncover the 
possibility of different factors influencing the frequency of the same crash type during the 
daytime or nighttime. This disaggregation did not lead to any key insights, likely due to the 
unavailability of traffic information by time of day. Future work should continue to explore this 
direction, as it seems logical that at least some contributing factors would differ by time of day. 
Acquiring traffic exposure by time of day will be critical to this analysis. Musunuru et al. (2017) 
provided one option for estimating day and night traffic volumes on rural two-lane roads in the 
absence of data. 
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Identifying Contributing Factors 

A review of systemic safety practices shows that, to date, systemic safety analyses often include 
subjective approaches to identifying contributing factors and characterizing crash potential. 
Agencies need additional information and guidance to help select and target their systemic safety 
improvements to make the most of limited funds, including detailed and data-driven information 
on situations characterized by contributing factors and facility types where focus crash types are 
more likely to occur. The task is challenging, as the nature of specific crash types that are the 
target of systemic safety management is not necessarily compatible with statistical analyses of 
contributing factors that require significant sample sizes. The following conclusions and 
recommendations pertain to the methodologies and findings with respect to roadway-, 
socioeconomic-, and weather-related factors. 

Methodologies 

The research team explored the use of random forests to identify contributing factors for FCFTs 
and noted both strengths and limitations. The strengths of the technique include the following: 

• Unlike traditional regression methods, the random-forest method does not require any 
predefined underlying relationship between the target (dependent) variable and predictors 
(independent variables). 

• Unlike traditional regression methods, the random-forest method does not require any 
formal distributional assumptions. 

• Strobl et al. (2009) noted that high-ranked variables on a random forest may appear on 
that list as a result of a complex interaction that cannot be captured in a traditional 
regression model. 

• Random forests provided estimates of what independent variables were most predictive in 
their relationship with the dependent variable. Rossi et al. (2005) concluded that random-
forest variable rankings with respect to predictive capabilities are more stable than those 
produced by stepwise logistic regressions. 

• In addition to predictive rankings, random forests also provided the percentage increase in 
MSE that would result from removing a particular variable from the analysis. 

The weaknesses of the technique include the following: 

• When random forests are used for regressions, they cannot predict beyond the range in the 
training data. 

• Random forests have been found to overfit datasets that are particularly noisy (Segal 
2004). 

• For data including categorical variables with different numbers of levels, random forests 
are biased in favor of attributes with more levels. Therefore, variable rankings with 
respect to predictive capabilities from random forests are not always reliable for this type 
of data. 

• Random forests are primarily a predictive modeling tool, not a descriptive tool, even 
though they can be used to learn about underlying mechanisms. 

• For large datasets, the model size for random forests can be quite large, using hundreds of 
megabytes of memory. 
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• Random forests can be black boxes that are difficult to interpret. 
• In our application of random forests for segments, the dependent variable was the number 

of crashes per mile, which was calculated as the number of crashes in a segment divided 
by the length of the segment. The results could be unexpectedly and unduly influenced by 
short segments. 

The most challenging aspect of implementing random forests within this context was in the 
limited ability to interpret the direction and form of the relationship between a factor of interest 
and expected crash frequency. This research implemented a relatively simple approach, searching 
for primarily linear trends between each factor and the random forest–predicted crash frequency. 
Future efforts should explore more effective ways to uncover and interpret relationships 
contained in random forests. 

While the research team compared random-forest results to findings of previous research on 
related crash types, it was not able to incorporate prior information or knowledge into the 
analyses. Bayesian approaches hold significant promise, and future efforts should explore 
contributing factors for FCFTs. Causal Bayesian networks, such as those applied by Karwa et al. 
(2011), have significant potential but will need to be further explored. 

Roadway, Socioeconomic, and Weather Factors 

Roadway factors uncovered by the analyses as influencing frequencies of crash types were 
generally consistent with the research team’s expectations based on previous research and 
existing practice. Factors associated with higher crash frequencies included the following: 

• Larger ADT volumes. 
• Steeper vertical grades. 
• Sharper curve radii. 
• Narrower lane and shoulder widths. 
• Unpaved shoulders or no shoulders. 
• Mountainous terrain. 
• Higher speed limits. 
• Wider crossing distances at intersections (captured by lane and median widths on 

approaches). 
• Absence of left- and right-turn channelization at intersections. 

Agencies with sufficient data and analysis capabilities can refer to the FHWA Systemic Safety 
Project Selection Tool for discussion of how to analyze data to identify contributing factors given 
a specific FCFT (Preston et al. 2013a). Agencies without sufficient data and analysis capabilities 
can reference factors developed in this research to help identify countermeasures and prioritize 
sites for systemic safety improvements. 

Findings related to socioeconomic- and weather-related factors showed promise, but there is not 
yet a significant amount of theory to support or refute the socioeconomic- and weather-related 
results of this effort. Findings related to socioeconomic variables are likely representing 
differences in travel behavior, driving behavior, and driving capabilities that seem key for safety 
analyses but are generally not incorporated into segment- and intersection-specific analyses that 
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also include traffic and roadway factors. Weather-related findings are likely representing 
differences in visibility, road conditions, and driver experience and behavior. Both sets of factors 
bring significant potential to the process of making more informed decisions about sites that have 
higher levels of crash potential. (Appendix H provides examples, including an analysis of model 
performance with and without consideration of socioeconomic variables.) A multiyear study 
focused on testing various alternatives and developing safety-analysis guidance on collecting, 
merging, and analyzing crash, traffic, roadway, census, and weather data is needed. 

As with many road-safety analyses, the dataset for this project consisted of correlated variables, 
particularly various socioeconomic characteristics. The research team conducted an additional 
analysis that used factor analysis to reduce dimensions of socioeconomic variables. As part of an 
exploratory effort, the research team developed and interpreted factors (e.g., a low socioeconomic 
status factor that weighs low income, no vehicle ownership, unemployment, and so on) and then 
included the factors in the random-forest analysis in place of individual variables. This approach 
was based on a study from transit ridership literature that reduced the dimensionality of a set of 
possibly relevant predictor variables from the same category (e.g., land use) prior to 
implementing a regression-tree approach. The approach and findings were promising but did not 
significantly change the overall conclusions when compared to the original analysis. Appendix G 
provides details of this analysis. Future efforts should explore the contributing factor–regression 
tree approach for correlated roadway, socioeconomic, and weather factors. 

Implementing and Evaluating Countermeasures 

The research team laid out a process for identifying and selecting countermeasures for focus 
crash types based on contributing factors and identified and proven safety countermeasures for 
common contributing factors. In doing so, the research team observed that most CMFs have not 
been developed for crash types at the level of disaggregation that may be needed for systemic 
safety applications. Similarly, expected changes in crash frequencies reflected by CMFs typically 
represent results of evaluations of site-specific applications of a treatment. Additional work on 
estimating network-wide safety improvements resulting from systemic applications of 
countermeasures is needed.
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APPENDIX A. LIST OF VARIABLES USED FROM FARS AND HSIS FOR FCFT 
SELECTION 

The following sections detail variables the research team used from FARS and HSIS for 
California, Ohio, and Washington for FCFT selection (NHTSA 2018a; FHWA 2018c). 

LIST OF FARS VARIABLES USED FOR FCFT SELECTION 

Common Variables 

• State number: State in which the crash occurred. 
• Consecutive number: Unique case number assigned to each crash. 
• Vehicle number: Number assigned to each vehicle in the case. 
• Person number: Number assigned to each person in the case. 

Accident Data File 

• Number of vehicle forms: Number of contact motor vehicles involved in the crash. 
• Number of forms submitted for persons in motor vehicles: Count of the number of 

persons in motor vehicles that are applicable to the case. 
• Number of forms submitted for persons not in motor vehicles: Count of the number of 

persons not in motor vehicles that are applicable to the case. 
• Month of crash: Month in which the crash occurred. 
• Day of crash: Month on which the crash occurred. 
• Day of week: Day of the week on which the crash occurred. 
• Year of crash: Year in which the crash occurred. 
• Hour of crash: Hour in which the crash occurred. 
• Minute of crash: Minutes after the hour at which the crash occurred. 
• First harmful event: First injury or damage-producing event of the crash. 
• Manner of collision: Orientation of two motor vehicles in transport when they were 

involved in the crash. 
• Relation to junction—specific location: Location of the crash with respect to its presence 

in or proximity to components in a junction or interchange area. 
• Type of intersection: Various intersection type in which the crash occurred. 
• Relation to trafficway: Identifies the location of the crash as it relates to its position on the 

trafficway. 
• Work zone: If the crash occurred within the boundaries of a work zone. 
• Light conditions: Type and level of light at the time of the crash. 
• Atmospheric conditions: Prevailing atmospheric conditions that existed at the time of the 

crash. 
• Drunk drivers: Number of drunk drivers involved in the crash. 
• Fatalities: Number of fatally injured persons in the crash. 
• Roadway function class: Functional classification of the trafficway on which the crash 

occurred. 
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Vehicle Data File 

• Initial contact point: Area on the vehicle that produced the first instance of injury to 
nonmotorists or damage to other property or to the vehicle itself. 

• Most harmful event: Event that resulted in the most severe injury. 
• Trafficway description: Trafficway flow just prior to the vehicle’s critical precrash event. 
• Total lanes in roadway: Number of travel lanes prior to the vehicle’s critical precrash 

event. 
• Roadway Alignment: Roadway alignment prior to the vehicle’s critical precrash event. 
• Roadway grade: Roadway grade prior to the vehicle’s critical precrash event. 
• Roadway-surface condition: Roadway-surface condition prior to the vehicle’s critical 

precrash event. 
• Traffic control device: Traffic controls in the vehicle’s environment prior to the vehicle’s 

critical precrash event. 

Person Data File 

• Age: Person’s age at the time of the crash in years. 
• Sex: Sex of the person involved in the crash. 
• Person type: Role of the person involved in the crash. 
• Injury severity: Severity of injury (using the KABCO scale) to the person in the crash. 
• Police-reported alcohol involvement: If alcohol was involved for the person. 
• Police-reported drug involvement: If drugs were involved for the person. 

LIST OF HSIS WASHINGTON VARIABLES USED FOR FCFT SELECTION 

Common Variables 

• Accident number: Case number of the accident. 
• Roadway inventory: Crash location information (i.e., county, route, and milepost) used in 

linkage to other files. 
• Accident reference point: Reference point where the crash occurred. 
• Beginning milepost: Beginning milepost of the road segment on which the crash 

occurred. 
• Ending milepost: Ending milepost of the road segment on which the crash occurred. 

Accident Data Files 

• Accident type: Type of accident that occurred. 
• Light conditions: Type and level of light at the time of the crash. 
• Relation to intersection: Location of the crash in relation to the intersection at which the 

crash occurred. 
• Collision type: Types of first and second collisions in the crash. 
• Roadway surface: Condition of the road surface where the crash occurred. 
• Number of pedestrians/cyclists: Number of pedestrians/cyclists involved in the crash. 
• Crash severity: Most severe injury that resulted from the crash. 
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• Number of persons injured: Total number of persons injured in the crash. 
• Total killed: Total number of persons killed in the crash. 
• Weather conditions: Weather conditions at the time the crash occurred. 
• Work zone status: Work zone details if the crash occurred in a work zone. 
• Object struck: Fixed object struck in the crash. 
• Driver’s age: Age of the driver of the vehicle involved in the crash. 
• Driver’s injury: Extent of injury to the driver of the vehicle involved in the crash. 
• Driver’s sex: Sex of the driver of the vehicle involved in the crash. 

Roadway and Curve Data Files 

• Calculated average AADT: Calculated average AADT of the location where the crash 
occurred. 

• Control of access: Access control in place at the location where the crash occurred. 
• Functional class: Functional class of roadway segment on which the crash occurred. 
• Median barrier type: Type of median barrier on the roadway segment on which the crash 

occurred. 
• Total number of lanes: Total number of lanes (in both directions) of the roadway segment 

on which the crash occurred. 
• Roadway classification: Roadway classification of the roadway segment on which the 

crash occurred. 
• Rural/urban identification: Rural or urban classification of the roadway where the crash 

occurred. 
• Curve beginning milepost: Beginning milepost of the curved segment on which the crash 

occurred. 
• Curve ending milepost: Ending milepost of the curved segment on which the crash 

occurred. 
• Grade beginning milepost: Beginning milepost of a grade segment on which the crash 

occurred. 
• Grade ending milepost: Ending milepost of a grade segment on which the crash occurred. 
• Percent grade: Percent grade for the roadway segment on which the crash occurred. 

LIST OF HSIS OHIO VARIABLES USED FOR FCFT SELECTION 

Common Variables 

• Accident number: Case number of accident. 
• County route: Crash location information used in linkage to other files. 
• Accident reference point: Reference point where the crash occurred. 
• Beginning milepost: Beginning milepost of the road segment on which the crash 

occurred. 
• Ending milepost: Ending milepost of the road segment on which the crash occurred. 
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Accident Data Files 

• Type of crash (first harmful event): First harmful event in the crash sequence. 
• Light conditions: Type and level of light at the time of the crash. 
• Relation to intersection: Location of crash in relation to the intersection in which the crash 

occurred. 
• Number of vehicles involved: Number of vehicles involved in the crash. 
• Road characteristics: Characteristics of the road on which the crash occurred. 
• Number of pedestrians: Number of pedestrians involved in the crash. 
• Crash severity: Most severe injury that resulted from the crash. 
• Serious visible injury: Total number of A injuries in the crash. 
• Minor visible injury: Total number of B injuries in the crash. 
• No visible injury: Total number of C injuries in the crash. 
• Total killed: Total number of persons killed in the crash. 
• Weather conditions: Weather conditions at the time the crash occurred. 
• Population: Rural/urban population where the crash occurred. 
• Driver’s age: Age of the driver of the vehicle involved in the crash. 
• Driver’s injury: Extent of injury to the driver of the vehicle involved in the crash. 
• Driver’s sex: Sex of the driver of the vehicle involved in the crash. 

Roadway Data Files 

• Calculated average AADT: Calculated average AADT of the crash location. 
• Control of access: Access control in place at the location of crash. 
• Functional class: Functional class of the roadway segment on which crash occurred. 
• Median type: Type of median on the roadway segment on which the crash occurred. 
• Total number of lanes: Total number of lanes (in both directions) of the roadway segment 

on which the crash occurred. 
• Roadway classification: Roadway classification of the roadway segment on which the 

crash occurred. 

LIST OF HSIS CALIFORNIA VARIABLES USED FOR FCFT SELECTION 

Common Variables 

• Accident number: Case number of accident. 
• County route: Crash location information used in linkage to other files. 
• Accident reference point: Reference point where the crash occurred. 
• Beginning milepost: Beginning milepost of the road segment on which the crash 

occurred. 
• Ending milepost: Ending milepost of the road segment on which the crash occurred. 
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Accident Data Files 

• Type of collision: Type of accident that occurred. 
• Light conditions: Type and level of light at the time of the crash. 
• Relation to intersection: Location of the crash in relation to the intersection at which the 

crash occurred. 
• Number of vehicles: Number of vehicles involved in the crash. 
• Roadway surface: Condition of the road surface on which the crash occurred. 
• Pedestrian involvement: Whether or not a pedestrian was involved in the crash. 
• Crash severity: Most severe injury that resulted from the crash. 
• Number of persons injured: Total number of persons injured in the crash. 
• Total killed: Total number of persons killed in the crash. 
• Weather conditions: Weather conditions at the time the crash occurred. 
• Primary collision factor: Primary collision factor of the crash. 
• Motor vehicles involved: Vehicles or nonvehicles that were involved in the crash. 
• Driver’s age: Age of the driver of the vehicle involved in the crash. 
• Driver’s sex: Sex of the driver of the vehicle involved in the crash. 

Roadway and Intersection Data Files 

• Calculated average AADT: Calculated average AADT of the location where the crash 
occurred. 

• Control of access: Access control in place at the location where the crash occurred. 
• Functional class: Functional class of the roadway segment on which the crash occurred. 
• Median barrier type: Type of median on the roadway segment on which the crash 

occurred. 
• Total number of lanes: Total number of lanes (in both directions) of the roadway segment 

on which the crash occurred. 
• Roadway classification: Roadway classification of the roadway segment on which the 

crash occurred. 
• Rural/urban identification: Rural or urban classification of the roadway where the crash 

occurred. 
• Traffic control type: Traffic control type at the intersection where the crash occurred. 

LIST OF HSIS MINNESOTA VARIABLES USED FOR FCFT SELECTION 

Common Variables 

• Accident number: Case number of accident. 
• Combined route system/route number: Combined route system and route number where 

the crash occurred. 
• Accident reference point: Reference point where the crash occurred. 
• Beginning milepost: Beginning milepost of the road segment on which the crash 

occurred. 
• Ending milepost: Ending milepost of the road segment on which the crash occurred. 
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Accident Data Files 

• Diagram of accident code: Accident configuration describing the direction and maneuvers 
of the vehicles involved in the crash. 

• Type of accident: Type of accident that occurred. 
• Road design: Design of the roadway where the crash occurred. 
• Light conditions: Type and level of light at the time of the crash. 
• Relation to intersection: Location of the crash in relation to the intersection. 
• Number of vehicles involved: Number of vehicles involved in the crash. 
• Road characteristics: Characteristics of the road on which the crash occurred. 
• Road surface conditions: Condition of the road surface on which the crash occurred. 
• Accident severity: Most severe injury in the crash. 
• Posted speed limit: Posted speed limit where the crash occurred. 
• Number of persons injured: Total number of persons injured in the crash. 
• Number of persons killed: Total number of persons killed in the crash. 
• Traffic-control devices: Traffic-control devices where the crash occurred. 
• Weather conditions: Weather conditions at the time the crash occurred. 
• Work zone marked: Type of work zone where the crash occurred. 
• Driver’s age: Age of the driver of the vehicle involved in the crash. 
• Driver’s injury: Extent of injury to the driver of the vehicle involved in the crash. 
• Driver’s sex: Sex of the driver of the vehicle involved in the crash. 

Roadway Data Files 

• Calculated average AADT: Calculated average AADT of the crash location. 
• Control of access: Access control in place at the location of crash. 
• Functional class: Functional class of the roadway segment on which the crash occurred. 
• Median type: Type of median on the roadway segment on which the crash occurred. 
• Total number of lanes: Total number of lanes (in both directions) of the roadway segment 

on which the crash occurred. 
• Roadway classification: Roadway classification of the roadway segment on which the 

crash occurred.
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APPENDIX B. SYSTEMIC SAFETY-PLANNING PROCESS 

Figure 4 and figure 5 show the selection of focus crash types (i.e., task 1 of the systemic 
safety-planning process). Each box shows a crash or facility type and the number of 
corresponding crashes. The shaded boxes are the selected focus crash types. The crash trees for 
selecting focus facility types for nonintersection crashes (i.e., task 2 of the systemic 
safety-planning process) are shown in figure 5 through figure 13. 

Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 4. Chart. Crash types defined by Manner of Collision. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 5. Chart. Crash types defined by First Harmful Event. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 6. Chart. Crash tree for ANG crashes at nonintersection locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 7. Chart. Crash tree for HEO crashes at nonintersection locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 8. Chart. Crash tree for rear-end crashes at nonintersection locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 9. Chart. Crash tree for fixed-object crashes in rural areas at nonintersection 
locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 10. Chart. Crash tree for fixed-object crashes in urban areas at nonintersection 
locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 11. Chart. Crash tree for pedestrian crashes in rural areas at nonintersection 
locations. 
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 12. Chart. Crash tree for pedestrian crashes in urban areas at nonintersection locations.
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Source: FHWA. 
Note: Shaded boxes are selected focus crash types. 

Figure 13. Chart. Crash tree for ROLL crashes at nonintersection locations.
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APPENDIX C. POTENTIAL INTERSECTION AND NONINTERSECTION FCFTS 
FROM FARS AND HSIS 

Table 93 through table 110 list potential intersection and nonintersection FCFTs as derived from 
FARS and HSIS (NHTSA 2018a; FHWA 2018c). Potential FCFTs from HSIS datasets are listed 
in order based on both K and KA crashes. 

Table 93. Potential nonintersection FCFTs from FARS. 

No. Crash Type Area Type Roadway Type 
Light 

Conditions 
Road 

Alignment K Crashes 
1 Fixed object Rural 2-lane Nighttime Curve 5,197 
2 Fixed object Rural 2-lane Daytime Curve 4,095 
3 Fixed object Rural 2-lane Nighttime Straight 4,094 
4 Fixed object Rural 2-lane Daytime Straight 3,825 
5 HEO Rural 2-lane Daytime Straight 2,789 
6 Pedestrian Urban Multilane divided Nighttime Straight 2,174 
7 Pedestrian Urban Multilane 

undivided 
Nighttime Straight 2,118 

8 Pedestrian Urban 2-lane Nighttime Straight 2,051 
9 Pedestrian Rural 2-lane Nighttime Straight 1,918 

10 ANG Rural 2-lane Daytime Straight 1,815 
11 Rollover/ 

overturn 
Rural 2-lane Daytime Curve 1,779 

12 HEO Rural 2-lane Nighttime Straight 1,768 
13 HEO Rural 2-lane Daytime Curve 1,747 
14 Rollover/ 

overturn 
Rural 2-lane Daytime Straight 1,736 

15 Rollover/ 
overturn 

Rural 2-lane Nighttime Curve 1,717 

16 Rollover/ 
overturn 

Rural 2-lane Nighttime Straight 1,681 

17 Fixed object Urban 2-lane Nighttime Straight 1,630 
18 Pedestrian Urban Interstates/ 

freeways/ 
expressways 

Nighttime Straight 1,627 

19 Fixed object Urban 2-lane Nighttime Curve 1,544 
20 Fixed object Urban Freeways Nighttime Straight 1,500 
21 Fixed object Urban Freeways Daytime Straight 1,188 
22 Fixed object Urban 2-lane Daytime Straight 1,177 
23 Rear end Urban Interstates/ 

freeways/ 
expressways 

Nighttime Straight 1,053 

24 Ditch Rural 2-lane Nighttime Straight 1,026 
25 Ditch Rural 2-lane Nighttime Curve 993 
26 Fixed object Rural Freeways Daytime Straight 987 
27 Fixed object Urban Freeways Nighttime Curve 924 
28 Rollover/ 

overturn 
Rural Interstates/ 

freeways/ 
expressways 

Daytime Straight 886 

29 Ditch Rural 2-lane Daytime Straight 868 
30 Pedestrian Urban 2-lane Daytime Straight 852 
31 ANG Rural 2-lane Daytime Curve 813 
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No. Crash Type Area Type Roadway Type 
Light 

Conditions 
Road 

Alignment K Crashes 
32 Rear end Urban Interstates/ 

freeways/ 
expressways 

Daytime Straight 801 

33 Fixed object Rural Freeways Nighttime Straight 785 
34 ANG Rural 2-lane Nighttime Straight 777 
35 Fixed object Urban 2-lane Daytime Curve 756 
36 Ditch Rural 2-lane Daytime Curve 755 
37 HEO Urban 2-lane Daytime Straight 736 
38 HEO Rural 2-lane Nighttime Curve 714 
39 Rear end Rural 2-lane Daytime Straight 714 
40 Fixed object Urban Multilane divided Nighttime Straight 686 
41 Pedestrian Rural Multilane divided Nighttime Straight 680 
42 ANG Urban 2-lane Nighttime Straight 625 
43 Rollover/ 

overturn 
Rural Interstates/ 

freeways/ 
expressways 

Nighttime Straight 600 

44 Fixed object Urban Freeways Daytime Curve 579 
45 ANG Urban Multilane 

undivided 
Daytime Straight 549 

46 Fixed object Rural Multilane divided Daytime Straight 539 
47 Pedestrian Rural 2-lane Daytime Straight 538 
48 Rear end Rural Interstates/ 

freeways/ 
expressways 

Nighttime Straight 526 

49 Fixed object Rural Multilane divided Nighttime Straight 519 
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Table 94. Potential intersection FCFTs from FARS. 

No. 
Crash 
Type 

Area 
Type Roadway Type Location Type 

Traffic 
Control 

Light 
Conditions 

K 
Crashes 

1 ANG Rural 2-lane 4-leg 
intersection 

Stop controlled Daytime 2,424 

2 ANG Urban 2-lane 4-leg 
intersection 

Stop controlled Daytime 1,126 

3 ANG Urban Multilane divided 4-leg 
intersection 

Traffic signal Daytime 977 

4 ANG Urban Multilane 
undivided 

4-leg 
intersection 

Traffic signal Daytime 864 

5 ANG Rural 2-lane 4-leg 
intersection 

Stop controlled Nighttime 750 

6 ANG Urban Multilane divided 4-leg 
intersection 

Traffic signal Nighttime 684 

7 ANG Rural 2-lane T intersection Stop controlled Daytime 592 
8 Pedestrian Urban Multilane divided 4-leg 

intersection 
Traffic signal Nighttime 589 

9 ANG Urban Multilane 
undivided 

4-leg 
intersection 

Traffic signal Nighttime 555 

10 ANG Urban 2-lane T intersection Stop controlled Daytime 536 
11 Pedestrian Urban Multilane 

undivided 
4-leg 

intersection 
Traffic signal Nighttime 432 

Table 95. Potential nonintersection FCFTs from HSIS: Minnesota (by K crashes). 

No. Crash Type Area Type 
Roadway 

Type 
Light 

Conditions 
Road 

Alignment K Crashes KA Crashes 
1 HEO Rural 2-lane  Daytime Straight 94 175 
2 ROR Rural 2-lane  Nighttime Curve 75 104 
3 ROR Rural 2-lane  Daytime Straight 71 226 
4 ROR Rural 2-lane  Daytime Curve 68 222 
5 ROR Rural 2-lane  Nighttime Straight 66 262 
6 HEO Rural 2-lane  Nighttime Straight 51 231 
7 ROLL Rural 2-lane  Daytime Straight 44 78 
8 HEO Rural 2-lane  Daytime Curve 42 71 
9 ROLL Rural 2-lane  Nighttime Curve 42 84 
10 ROLL Rural 2-lane  Nighttime Straight 38 103 
11 HEO Urban 2-lane  Nighttime Straight 33 140 
12 ROLL Rural 2-lane  Daytime Curve 29 143 
13 Pedestrian Urban 2-lane  Nighttime Straight 19 140 
14 HEO Urban 2-lane  Daytime Straight 17 65 
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Table 96. Potential nonintersection FCFTs from HSIS: Minnesota (by KA crashes). 

No. Crash Type Area Type Roadway Type 
Light 

Conditions 
Road 

Alignment 
K 

Crashes 
KA 

Crashes 
1 ROR Rural 2-lane  Nighttime Straight 66 262 
2 HEO Rural 2-lane  Nighttime Straight 51 231 
3 ROR Rural 2-lane  Daytime Straight 71 226 
4 ROR Rural 2-lane  Daytime Curve 68 222 
5 HEO Rural 2-lane  Daytime Straight 94 175 
6 ROLL Rural 2-lane  Daytime Curve 29 143 
7 HEO Urban 2-lane  Nighttime Straight 33 140 
8 Pedestrian Urban 2-lane  Nighttime Straight 19 140 
9 ROR Rural 2-lane  Nighttime Curve 75 104 

10 ROLL Rural 2-lane  Nighttime Straight 38 103 
11 ROLL Rural 2-lane  Nighttime Curve 42 84 
12 ROLL Rural 2-lane  Daytime Straight 44 78 
13 HEO Rural 2-lane  Daytime Curve 42 71 
14 HEO Urban 2-lane  Daytime Straight 17 65 

Table 97. Potential intersection FCFTs from HSIS: Minnesota (by K crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type 

Location 
Type 

Traffic 
Control 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 ANG Rural 2-lane  4-leg 
intersection 

Minor road 
stop control 

Daytime 97 203 

2 ANG Rural Multilane 
divided 

4-leg 
intersection 

Minor road 
stop control 

Daytime 24 42 

3 ANG Urban Multilane 
divided 

4-leg 
intersection 

Traffic 
signal 

Daytime 22 80 

4 ANG Urban 2-lane  4-leg 
intersection 

Minor road 
stop control 

Daytime 15 116 

5 Pedestrian Urban Multilane 
divided 

4-leg 
intersection 

Traffic 
signal 

Nighttime 13 42 

Table 98. Potential intersection FCFTs from HSIS: Minnesota (by KA crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type 

Location 
Type 

Traffic 
Control 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 ANG Rural 2-lane  4-leg 
intersection 

Minor road 
stop control 

Daytime 97 203 

2 ANG Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Daytime 22 116 

3 ANG Urban 2-lane  4-leg 
intersection 

Minor road 
stop control 

Daytime 15 80 

4 ANG Rural Multilane 
divided 

4-leg 
intersection 

Minor road 
stop control 

Daytime 24 42 

5 Pedestrian Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Nighttime 13 42 
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Table 99. Potential nonintersection FCFTs from HSIS: Ohio (by K crashes). 

No. Crash Type Area Type 
Roadway 

Type 
Light 

Conditions 
Road 

Alignment 
K 

Crashes 
KA 

Crashes 
1 Fixed object Rural 2-lane Daytime Curve 123 773 
2 Fixed object Rural 2-lane  Daytime Straight 111 1027 
3 Fixed object Rural 2-lane  Nighttime Curve 110 569 
4 Fixed object Rural 2-lane  Nighttime Straight 101 792 
5 Sideswipe—

meeting 
Rural 2-lane  Daytime Straight 85 391 

6 HEO Rural 2-lane  Daytime Straight 78 181 
7 Fixed object Urban Freeways Nighttime Straight 52 522 
8 Fixed object Urban Freeways Nighttime Curve 49 291 
9 Fixed object Urban Freeways Daytime Straight 48 590 
10 Sideswipe—

meeting 
Rural 2-lane  Daytime Curve 48 196 

11 Pedestrian Urban Multilane 
undivided 

Nighttime Straight 45 169 

12 Sideswipe—
meeting 

Rural 2-lane  Nighttime Straight 42 199 

13 Rear end Urban Freeways Nighttime Straight 35 238 
14 Fixed object Urban Freeways Daytime Curve 30 297 
15 Rear end Urban Freeways Daytime Straight 28 565 
16 Fixed object Urban 2-lane  Nighttime Straight 25 191 
17 ROLL Rural 2-lane  Daytime Curve 22 225 
18 Fixed object Rural Freeways Daytime Straight 21 155 
19 Fixed object Urban 2-lane  Daytime Straight 21 202 
20 Sideswipe—

passing 
Urban Freeways Daytime Straight 21 348 

21 Fixed object Urban Multilane 
undivided 

Nighttime Straight 18 158 

22 ROLL Rural 2-lane  Daytime Curve 18 166 
23 Rear end Rural 2-lane  Daytime Straight 16 409 
24 Sideswipe—

passing 
Urban Freeways Daytime Straight 14 169 
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Table 100. Potential nonintersection FCFTs from HSIS: Ohio (by KA crashes). 

No. Crash Type Area Type 
Roadway 

Type 
Light 

Conditions 
Road 

Alignment K Crashes 
KA 

Crashes 
1 Fixed object Rural 2-lane  Daytime Straight 111 1,027 
2 Fixed object Rural 2-lane  Nighttime Straight 101 792 
3 Fixed object Rural 2-lane  Daytime Curve 123 773 
4 Fixed object Urban Freeways Daytime Straight 48 590 
5 Fixed object Rural 2-lane  Nighttime Curve 110 569 
6 Rear end Urban Freeways Daytime Straight 28 565 
7 Fixed object Urban Freeways Nighttime Straight 52 522 
8 Rear end Rural 2-lane  Daytime Straight 16 409 
9 Sideswipe—

meeting 
Rural 2-lane  Daytime Straight 85 391 

10 Sideswipe—
passing 

Urban Freeways Daytime Straight 21 348 

11 Rear end Urban Multilane 
undivided 

Daytime Straight 6 318 

12 Fixed object Urban Freeways Daytime Curve 30 297 
13 Fixed object Urban Freeways Nighttime Curve 49 291 
14 Rear end Urban 2-lane  Daytime Straight 6 270 
15 Rear end Urban Freeways Nighttime Straight 35 238 
16 ROLL Rural 2-lane  Daytime Curve 22 225 
17 ANG Urban Multilane 

undivided 
Daytime Straight 4 213 

18 Fixed object Urban 2-lane  Daytime Straight 21 202 
19 Sideswipe—

meeting 
Rural 2-lane  Nighttime Straight 42 199 

20 Sideswipe—
meeting 

Rural 2-lane  Daytime Curve 48 196 

21 Fixed object Urban 2-lane  Nighttime Straight 25 191 
22 HEO Rural 2-lane  Daytime Straight 78 181 
23 Pedestrian Urban Multilane 

undivided 
Nighttime Straight 45 169 

24 Sideswipe—
passing 

Urban Freeways Daytime Straight 14 169 
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Table 101. Potential intersection FCFTs from HSIS: Ohio (by K crashes). 

No. 
Crash 
Type 

Area 
Type Roadway Type Location Type 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 ANG Rural 2-lane  At or related to 
intersection 

Daytime 153 1,152 

2 ANG Rural 2-lane  At or related to 
intersection 

Nighttime 48 296 

3 ANG Urban Multilane 
divided 

At or related to 
intersection 

Daytime 33 511 

4 ANG Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 29 657 

5 ANG Urban Multilane 
divided 

At or related to 
intersection 

Daytime 27 243 

6 ANG Rural 2-lane  At or related to 
intersection 

Daytime 25 213 

7 Pedestrian Urban Multilane 
undivided 

At or related to 
intersection 

Nighttime 20 163 

8 ANG Urban 2-lane  At or related to 
intersection 

Nighttime 17 169 

9 Rear end Rural 2-lane  At or related to 
intersection 

Daytime 13 205 

10 Pedestrian Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 11 184 

11 ANG Urban Multilane 
undivided 

At or related to 
intersection 

Nighttime 10 242 

12 Rear end Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 10 338 

13 Rear end Urban 2-lane  At or related to 
intersection 

Daytime 5 243 
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Table 102. Potential intersection FCFTs from HSIS: Ohio (by KA crashes). 

No. 
Crash 
Type 

Area 
Type Roadway Type Location Type 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 ANG Rural 2-lane  At or related to 
intersection 

Daytime 153 1,152 

2 ANG Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 29 657 

3 ANG Urban Multilane 
divided 

At or related to 
intersection 

Daytime 33 511 

4 Rear end Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 10 338 

5 ANG Rural 2-lane  At or related to 
intersection 

Nighttime 48 296 

6 ANG Urban Multilane 
divided 

At or related to 
intersection 

Daytime 27 243 

7 Rear end Urban 2-lane  At or related to 
intersection 

Daytime 5 243 

8 ANG Urban Multilane 
undivided 

At or related to 
intersection 

Nighttime 10 242 

9 ANG Rural 2-lane  At or related to 
intersection 

Daytime 25 213 

10 Rear end Rural 2-lane  At or related to 
intersection 

Daytime 13 205 

11 Pedestrian Urban Multilane 
undivided 

At or related to 
intersection 

Daytime 11 184 

12 ANG Urban 2-lane  At or related to 
intersection 

Nighttime 17 169 

13 Pedestrian Urban Multilane 
undivided 

At or related to 
intersection 

Nighttime 20 163 
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Table 103. Potential nonintersection FCFTs from HSIS: California (by K crashes). 
No. Crash Type Area Type Roadway Type Light Conditions K Crashes KA Crashes 
1 Hit object Urban Freeways Nighttime 530 1,983 
2 Pedestrian Urban Freeways Nighttime 350 542 
3 Hit object Urban Freeways Daytime 279 1,182 
4 Rear end Urban Freeways Nighttime 276 1,172 
5 HEO Rural 2-lane  Daytime 223 530 
6 Hit object Rural 2-lane  Daytime 214 867 
7 Hit object Rural 2-lane  Nighttime 173 547 
8 Rear end Urban Freeways Daytime 162 1,182 
9 Hit object Rural Freeways Nighttime 137 326 
10 ROLL Rural Freeways Daytime 135 418 
11 HEO Rural 2-lane  Nighttime 129 281 
12 Hit object Rural Freeways Daytime 121 394 
13 Sideswipe Urban Freeways Daytime 120 738 
14 ROLL Rural 2-lane  Daytime 107 716 
15 Pedestrian Urban Multilane divided Nighttime 106 252 
16 ROLL Urban Freeways Nighttime 106 504 
17 ROLL Urban Freeways Daytime 96 623 
18 Sideswipe Urban Freeways Nighttime 88 436 
19 ROLL Rural Freeways Nighttime 84 235 
20 Broadside Urban Freeways Nighttime 72 260 
21 Rear end Rural Freeways Nighttime 71 215 
22 ROLL Rural 2-lane  Nighttime 54 221 
23 Sideswipe Rural 2-lane  Daytime 40 201 

Table 104. Potential nonintersection FCFTs from HSIS: California (by KA crashes). 
No. Crash Type Area Type Roadway Type Light Conditions K Crashes KA Crashes 
1 Hit object Urban Freeways Nighttime 530 1,983 
2 Hit object Urban Freeways Daytime 279 1,182 
3 Rear end Urban Freeways Daytime 162 1,182 
4 Rear end Urban Freeways Nighttime 276 1,172 
5 Hit object Rural 2-lane  Daytime 214 867 
6 Sideswipe Urban Freeways Daytime 120 738 
7 ROLL Rural 2-lane  Daytime 107 716 
8 ROLL Urban Freeways Daytime 96 623 
9 Hit object Rural 2-lane  Nighttime 173 547 
10 Pedestrian Urban Freeways Nighttime 350 542 
11 HEO Rural 2-lane  Daytime 223 530 
12 ROLL Urban Freeways Nighttime 106 504 
13 Sideswipe Urban Freeways Nighttime 88 436 
14 ROLL Rural Freeways Daytime 135 418 
15 Hit object Rural Freeways Daytime 121 394 
16 Hit object Rural Freeways Nighttime 137 326 
17 HEO Rural 2-lane  Nighttime 129 281 
18 Broadside Urban Freeways Nighttime 72 260 
19 Pedestrian Urban Multilane divided Nighttime 106 252 
20 ROLL Rural Freeways Nighttime 84 235 
21 ROLL Rural 2-lane  Nighttime 54 221 
22 Rear end Rural Freeways Nighttime 71 215 
23 Sideswipe Rural 2-lane  Daytime 40 201 
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Table 105. Potential intersection FCFTs from HSIS: California (by K crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type 

Location 
Type Traffic Control 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 Broadside Rural 2-lane  4-leg 
intersection 

Minor road stop 
control 

Daytime 30 23 

2 Broadside Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Daytime 13 71 

3 Broadside Rural 2-lane  4-leg 
intersection 

Minor road stop 
control 

Nighttime 12 33 

4 Broadside Rural Multilane 
divided 

4-leg 
intersection 

Minor road stop 
control 

Daytime 11 35 

5 Broadside Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Nighttime 10 48 

6 Pedestrian Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Nighttime 9 37 

7 Hit object Rural 2-lane  T-
intersection 

Minor road stop 
control 

Nighttime 4 15 

Table 106. Potential intersection FCFTs from HSIS: California (by KA crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type 

Location 
Type 

Traffic 
Control 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 Broadside Rural 2-lane  4-leg 
intersection 

Minor road 
stop control 

Daytime 30 23 

2 Broadside Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Daytime 13 71 

3 Broadside Rural 2-lane  4-leg 
intersection 

Minor road 
stop control 

Nighttime 12 33 

4 Broadside Rural Multilane 
divided 

4-leg 
intersection 

Minor road 
stop control 

Daytime 11 35 

5 Broadside Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Nighttime 10 48 

6 Pedestrian Urban Multilane 
divided 

4-leg 
intersection 

Traffic signal Nighttime 9 37 

7 Hit object Rural 2-lane  T-intersection Minor road 
stop control 

Nighttime 4 15 

Table 107. Potential nonintersection FCFTs from HSIS: Washington (by K crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type Light Conditions 

Road 
Alignment 

K 
Crashes 

KA 
Crashes 

1 Hit object Rural 2-lane  Daytime Straight 35 118 
2 Hit object Rural 2-lane Nighttime Straight 33 111 
3 HEO Rural 2-lane  Daytime Straight 33 59 
4 Hit object Rural 2-lane  Nighttime Curve 24 64 
5 Hit object Rural 2-lane  Daytime Curve 23 92 
6 Hit object Urban Freeways Nighttime Straight 22 66 
7 Pedestrian Urban Multilane 

undivided 
Nighttime Straight 18 57 

8 ANG Rural 2-lane  Daytime Straight 16 59 
9 Rear end Urban Freeways Nighttime Straight 15 63 
10 Hit object Urban Freeways Daytime Straight 11 60 
11 Rear end Urban Freeways Daytime Straight 8 110 
12 Rear end Rural 2-lane  Daytime Straight 8 57 
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Table 108. Potential nonintersection FCFTs from HSIS: Washington (by KA crashes). 

No. Crash Type 
Area 
Type Roadway Type 

Light 
Conditions 

Road 
Alignment 

K 
Crashes 

KA 
Crashes 

1 Hit object Rural 2-lane  Daytime Straight 35 118 
2 Hit object Rural 2-lane  Nighttime Straight 33 111 
3 Rear end Urban Freeways Daytime Straight 8 110 
4 Hit object Rural 2-lane  Daytime Curve 23 92 
5 Hit object Urban Freeways Nighttime Straight 22 66 
6 Hit object Rural 2-lane  Nighttime Curve 24 64 
7 Rear end Urban Freeways Nighttime Straight 15 63 
8 Hit object Urban Freeways Daytime Straight 11 60 
9 ANG Rural 2-lane  Daytime Straight 16 59 
10 HEO Rural 2-lane  Daytime Straight 33 59 
11 Pedestrian Urban Multilane 

undivided 
Nighttime Straight 18 57 

12 Rear end Rural 2-lane  Daytime Straight 8 57 

Table 109. Potential intersection FCFTs from HSIS: Washington (by K crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type Location Type Light Conditions 

K 
Crashes 

KA 
Crashes 

1 ANG Rural 2-lane  At or related to intersection Daytime 28 64 
2 ANG Urban Multilane 

undivided 
At or related to intersection Daytime 13 110 

3 Pedestrian Urban Multilane 
undivided 

At or related to intersection Nighttime 11 129 

4 ANG Rural 2-lane  At or related to intersection Nighttime 10 95 
5 ANG Urban 2-lane  At or related to intersection Daytime 7 42 
6 Rear end Urban Multilane 

undivided 
At or related to intersection Daytime 5 49 

7 ANG Urban Multilane 
undivided 

At or related to intersection Nighttime 5 48 

8 ANG Urban 2-lane  At or related to intersection Daytime 5 40 
9 Rear end Rural 2-lane  At or related to intersection Daytime 3 49 
10 Pedestrian Urban Multilane 

undivided 
At or related to intersection Daytime 3 40 



 

168 

Table 110. Potential intersection FCFTs from HSIS: Washington (by KA crashes). 

No. Crash Type 
Area 
Type 

Roadway 
Type Location Type 

Light 
Conditions 

K 
Crashes 

KA 
Crashes 

1 Pedestrian Urban Multilane 
undivided 

At or related to intersection Nighttime 11 129 

2 ANG Urban Multilane 
undivided 

At or related to intersection Daytime 13 110 

3 ANG Rural 2-lane  At or related to intersection Nighttime 10 95 
4 ANG Rural 2-lane  At or related to intersection Daytime 28 64 
5 Rear end Urban Multilane 

undivided 
At or related to intersection Daytime 5 49 

6 Rear end Rural 2-lane  At or related to intersection Daytime 3 49 
7 ANG Urban Multilane 

undivided 
At or related to intersection Nighttime 5 48 

8 ANG Urban 2-lane  At or related to intersection Daytime 7 42 
9 ANG Urban 2-lane  At or related to intersection Daytime 5 40 
10 Pedestrian Urban Multilane 

undivided 
At or related to intersection Daytime 3 40 
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APPENDIX D. RANDOM-FOREST R CODE 

Figure 14 provides a sample random-forest code that was used in R software for the 
contributing-factor analysis. In this particular example, the code was used to analyze ANG 
crashes at horizontal curves on rural two-lane highway segments. The code can be modified to 
analyze other focus crash types. 

 
Source: FHWA. 

Figure 14. Screenshot. Sample random-forest code for R software. 
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APPENDIX E. RANDOM-FOREST OUTPUTS 

Figure 15 through figure 70 show random-forest outputs of the contributing-factor analysis for 
California, Ohio, and Washington data. 

RANDOM FORESTS OF CALIFORNIA DATA 

 
Source: FHWA. 

Figure 15. Graph. ANG-D crashes at four-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 16. Graph. ANG-N crashes at four-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 17. Graph. ANG-D crashes at four-leg stop-controlled intersection on urban 
two-lane roads. 
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Source: FHWA. 

Figure 18. Graph. ANG-D crashes at four-leg signalized intersections on urban multilane 
divided roads. 
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Source: FHWA. 

Figure 19. Graph. ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads. 
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Source: FHWA. 

Figure 20. Graph. ANG-D crashes at three-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 21. Graph. ANG-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads. 
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RANDOM FORESTS OF WASHINGTON DATA 

 
Source: FHWA. 

Figure 22. Graph. ROR-D crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 23. Graph. ROR-N crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 24. Graph. ROR-D crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 25. Graph. ROR-N crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 26. Graph. LNDP-D crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 27. Graph. LNDP-N crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 28. Graph. LNDP-D crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 29. Graph. LNDP-N crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 30. Graph. HEO-D crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 31. Graph. HEO-N crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 32. Graph. HEO-D crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 33. Graph. HEO-N crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 34. Graph. ROLL-D crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 35. Graph. ROLL-N crashes at tangent segments on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 36. Graph. ROLL-D crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 37. Graph. ROLL-N crashes at horizontal curves on rural two-lane highway 
segments. 
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Source: FHWA. 

Figure 38. Graph. ANG-D crashes at tangent segments on rural two-lane highway 
segments. 
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RANDOM FORESTS OF OHIO DATA 

 
Source: FHWA. 

Figure 39. Graph. ROR-KAB-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 40. Graph. ROR-KAB-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 41. Graph. ROR-KABCO-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 42. Graph. ROR-KABCO-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 43. Graph. LNDP-KAB-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 44. Graph. LNDP-KAB-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 45. Graph. LNDP-KABCO-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 46. Graph. LNDP-KABCO-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 47. Graph. HEO-KAB-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 48. Graph. HEO-KAB-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 49. Graph. HEO-KABCO-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 50. Graph. HEO-KABCO-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 51. Graph. ROLL-KAB-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 52. Graph. ROLL-KAB-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 53. Graph. ROLL-KABCO-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 54. Graph. ROLL-KABCO-N crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 55. Graph. ANG-KAB-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 56. Graph. ANG-KABCO-D crashes on rural two-lane highway segments. 
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Source: FHWA. 

Figure 57. Graph. ANG-KAB-D crashes at four-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 58. Graph. ANG-KAB-N crashes at four-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 59. Graph. ANG-KABCO-D crashes at four-leg stop-controlled intersections on 
rural two-lane roads. 
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Source: FHWA. 

Figure 60. Graph. ANG-KABCO-N crashes at four-leg stop-controlled intersections on 
rural two-lane roads. 
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Source: FHWA. 

Figure 61. Graph. ANG-KAB-D crashes at four-leg stop-controlled intersections on urban 
two-lane roads. 
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Source: FHWA. 

Figure 62. Graph. ANG-KABCO-D crashes at four-leg stop-controlled intersections on 
urban two-lane roads. 
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Source: FHWA. 

Figure 63. Graph. ANG-KAB-D crashes at four-leg signalized intersections on urban 
multilane divided roads. 
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Source: FHWA. 

Figure 64. Graph. ANG-KABCO-D crashes at four-leg signalized intersections on urban 
multilane divided roads. 
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Source: FHWA. 

Figure 65. Graph. ANG-KAB-D crashes at four-leg signalized intersections on urban 
multilane undivided roads. 
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Source: FHWA. 

Figure 66. Graph. ANG-KABCO-D crashes at four-leg signalized intersections on urban 
multilane undivided roads. 
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Source: FHWA. 

Figure 67. Graph. ANG-KAB-D crashes at three-leg stop-controlled intersections on rural 
two-lane roads. 
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Source: FHWA. 

Figure 68. Graph. ANG-KABCO-D crashes at three-leg stop-controlled intersections on 
rural two-lane roads. 
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Source: FHWA. 

Figure 69. Graph. ANG-KAB-D crashes at four-leg stop-controlled intersections on rural 
multilane divided roads. 
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Source: FHWA. 

Figure 70. Graph. ANG-KABCO-D crashes at four-leg stop-controlled intersections on 
rural multilane divided roads.
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APPENDIX F. SAMPLE PLOTS OF RANDOM FOREST–PREDICTED CRASH 
FREQUENCIES VERSUS PREDICTOR VARIABLES 

Figure 71 through figure 89 show sample plots of random forest–predicted crash frequencies 
versus predictor variables for ANG crashes at four-leg stop-controlled intersections on rural 
two-lane roads and ROR crashes at horizontal curves on rural two-lane highway segments. 

ANG-D CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON 
RURAL TWO-LANE ROADS 

 
Source: FHWA. 

Figure 71. Graph. Predicted ANG crash frequency versus cross street AADT. 
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Source: FHWA. 

Figure 72. Graph. Predicted ANG crash frequency versus mainline AADT. 

 
Source: FHWA. 

Figure 73. Graph. Predicted ANG crash frequency versus lane width. 
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Source: FHWA. 

Figure 74. Graph. Predicted ANG crash frequency versus average annual maximum 
temperature. 

 
Source: FHWA. 

Figure 75. Graph. Predicted ANG crash frequency versus proportion of people (ages 25+) 
without a high school diploma. 
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Source: FHWA. 

Figure 76. Graph. Predicted ANG crash frequency versus average annual rainfall. 

 
Source: FHWA. 

Figure 77. Graph. Predicted ANG crash frequency versus proportion of households with 
income >$100,000. 
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Source: FHWA. 

Figure 78. Graph. Predicted ANG crash frequency versus average annual number of days 
with a minimum temperature of ≤32℉. 

 
Source: FHWA. 

Figure 79. Graph. Predicted ANG crash frequency versus proportion of population 
ages 45–64. 



 

232 

ROR-D CRASHES AT HORIZONTAL CURVES ON RURAL TWO-LANE HIGHWAY 
SEGMENTS 

 
Source: FHWA. 

Figure 80. Graph. Predicted ROR crash frequency per mile versus curve radius. 

 
Source: FHWA. 

Figure 81. Graph. Predicted ROR crash frequency per mile versus AADT. 
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Source: FHWA. 

Figure 82. Graph. Predicted ROR crash frequency per mile versus percentage of trucks on 
the roadway. 

 
Source: FHWA. 

Figure 83. Graph. Predicted ROR crash frequency per mile versus percent grade. 
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Source: FHWA. 

Figure 84. Graph. Predicted ROR crash frequency per mile versus average shoulder width. 

 
Source: FHWA. 

Figure 85. Graph. Predicted ROR crash frequency per mile versus proportion of 
population ages 45–64. 
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Source: FHWA. 

Figure 86. Graph. Predicted ROR crash frequency per mile versus average annual 
minimum temperature. 

 
Source: FHWA. 

Figure 87. Graph. Predicted ROR crash frequency per mile versus average annual number 
of days with a minimum temperature of ≤32℉. 
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Source: FHWA. 

Figure 88. Graph. Predicted ROR crash frequency per mile versus proportion of people 
(ages 25+) without a high school diploma. 

 
Source: FHWA. 

Figure 89. Graph. Predicted ROR crash frequency per mile versus average annual rainfall.
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APPENDIX G. EXPLORATION OF FACTOR ANALYSIS 

The research team explored use of a factor analysis to address the correlation between 
socioeconomic characteristics used in the contributing-factor analysis. A study by Li et al. (2016) 
presented a decision tree–based model to forecast rail-transit ridership at the station level 
according to surrounding land-use patterns. To avoid the impact of irrelevant land-use variables, 
Li et al. employed a canonical correlation-analysis method to investigate the relationship between 
all land-use variables and the demand variables in a multivariate framework. As a result, they 
were able to define different factors that were a combination of different land-use variables for 
use in their decision tree. 

The research team applied the technique used by Li et al. (2016) to derive factors from a 
combination of various socioeconomic variables for use in the contributing-factor analysis. For 
the purpose of this exploration, the research team used the data from Ohio for the following 
factors: 

• Curves and tangent segments on rural two-lane roads. 
• Four-leg stop-controlled intersections on urban two-lane roads. 
• Four-leg signalized intersections on urban multilane undivided roads. 

FACTOR ANALYSIS 

The following sections provide results of the factor analysis for Ohio segments and intersections. 

Curves and Tangent Segments on Rural Two-Lane Highway Roads  

The factor analysis for curves and tangent segments on rural two-lane highway roads in Ohio 
resulted in three factors for the contributing-factor analysis: 

• Factor 1 shows more weight on population/households with less education, low income, 
and less vehicle ownership. 

• Factor 2 shows more weight on population/households with less education, high income, 
and less vehicle ownership. 

• Factor 3 shows more weight on population/households with more education, high income, 
and more vehicle ownership. 

Table 111 shows the factor-analysis results for curves and tangent segments on rural two-lane 
highway roads in Ohio. 
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Table 111. Factor analysis for curves and tangent segments. 
Socioeconomic Variable Factor 1 Factor 2 Factor 3 

Percentage of population ages 16+ unemployed 0.32420 −0.20406 0.14908 
Percentage of population ages 25+ without a high school 
diploma 

0.51173 0.64328 −0.34034 

Percentage of population ages 25+ with a high school diploma 
but no university degree 

0.10912 −0.89584 −0.19936 

Percentage of population ages 25+ with a university degree −0.66791 0.26139 0.57936 
Percentage of households with income <$50,000 0.87527 −0.24687 0.14978 
Percentage of households with income between $50,000 and 
$100,000 

−0.52770 0.09029 −0.53644 

Percentage of households with income >$100,000 −0.71865 0.26610 0.39014 
Percentage of households with 0 vehicles 0.40680 0.54877 −0.30267 
Percentage of households with 1 vehicle 0.62705 −0.01826 0.50984 
Percentage of households with ≥2 vehicles −0.78055 −0.32344 −0.24351 

Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads 

The factor analysis for four-leg stop-controlled intersections on urban two-lane roads in Ohio 
resulted in two factors for the contributing-factor analysis: 

• Factor 1 is associated with the prevalence of population/households with no high school 
education and low income. 

• Factor 2 is associated with the prevalence of population/households with a high school 
education and medium to high income. 

The number of vehicles in a household were not included in the factor analysis due to their 
presence leading to some noninterpretable results. Thus, the research team decided to introduce 
two more factors dealing with household vehicle ownership to the analysis: 

• Factor 3 is associated with the percentage of households with no vehicles. 
• Factor 4 is associated with the percentage of households with any number of vehicles. 

Table 112 shows the factor analysis results for four-leg stop-controlled intersections on urban 
two-lane roads in Ohio. 

Table 112. Factor analysis for four-leg stop-controlled intersections. 
Socioeconomic Variable Factor 1 Factor 2 

Percentage of people ages 16+ unemployed 0.58068 −0.30712 
Percentage of population ages 25+ without a high school diploma 0.71821 −0.26190 
Percentage of population ages 25+ with a high school diploma but 
no university degree 

0.48666 0.83686 

Percentage of population ages 25+ with a university degree −0.89247 −0.33733 
Percentage of households with income <$50,000 0.91095 −0.23481 
Percentage of households with income between $50,000 and 
$100,000 

−0.41974 0.72009 

Percentage of households with income >$100,000 −0.88462 −0.25201 
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Four-Leg Signalized Intersections on Urban Multilane Undivided Roads 

The factor analysis for four-leg signalized intersections on urban multilane undivided roads in 
Ohio resulted in two factors for the contributing-factor analysis: 

• Factor 1 is associated with the prevalence of population/households with no high school 
education and low income. 

• Factor 2 is associated with the prevalence of population/households with a high school 
education and medium to high income. 

The number of vehicles in a household were not included in the factor analysis due to their 
presence leading to some noninterpretable results. 

Table 113 shows the factor analysis results for four-leg signalized intersections on urban 
multilane undivided roads in Ohio. 

Table 113. Factor analysis for four-leg signalized intersections. 
Socioeconomic Variable Factor 1 Factor 2 

Percentage of people ages 16+ unemployed 0.65462 −0.35922 
Percentage of population ages 25+ without a high school diploma 0.79210 −0.10944 
Percentage of population ages 25+ with a high school diploma but no university 
degree 

0.54037 0.65992 

Percentage of population ages 25+ with a university degree −0.90269 −0.34545 
Percentage of households with income <$50,000 0.92500 −0.21541 
Percentage of households with income between $50,000 and $100,000 −0.50650 0.69851 
Percentage of households with income >$100,000 −0.86864 −0.23768 

RESULTS FROM THE CONTRIBUTING-FACTOR ANALYSIS 

The following sections provide results of the updated contributing-factor analysis for the 
intersection and nonintersection FCFTs based on KAB and KABCO crashes using Ohio data. 

ROR Crashes on Rural Two-Lane Highway Roads in Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 114 and table 115 summarize the most influential predictor variables for the expected 
number of ROR-D crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (ROR-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROR-KABCO-D) 
according to random forests generated using Ohio data. The random-forest outputs for both crash 
severities are shown in figure 90 and figure 91. 
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Table 114. Contributing factors for ROR-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Surface width Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Curve radius Increases/decreases* 
Percentage of population ages 75+ Decreases 
Average shoulder width Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 3 (more education, high income, more vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 90. Graph. Output for ROR-KAB-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 115. Contributing factors for ROR-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Surface width Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percentage of population ages 75+ Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Percent grade Increases 
Percentage of population ages 15–19 Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Speed limit Increases 
Average shoulder width Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 91. Graph. Output for ROR-KABCO-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 116 and table 117 summarize the most influential predictor variables for the expected 
number of ROR-N crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (ROR-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ROR-KABCO-N) 
according to random forests generated using Ohio data. The random-forest outputs for both crash 
severities are shown in figure 92 and figure 93. 

Table 116. Contributing factors for ROR-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Average shoulder width Decreases 
Surface width Decreases 
Percentage of population ages 75+ Decreases 
Percent grade Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 92. Graph. Output for ROR-KAB-N crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 117. Contributing factors for ROR-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Average shoulder width Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Curve radius Increases/decreases* 
Surface width Decreases 
Percentage of population ages 75+ Decreases 
Speed limit Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 93. Graph. Output for ROR-KABCO-N crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ROR crashes on rural two-lane horizontal curves and highway tangent segments 
in Ohio: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of ROR-D and ROR-N crashes. 

• Percent grade: an increase in percent grade was consistently associated with an increase 
in the frequency of ROR-D crashes. 

• Average shoulder width: an increase in shoulder width was consistently associated with a 
decrease in the frequency of ROR-D and ROR-N crashes (and therefore a decrease in 
shoulder width was consistently associated with an increase in the frequency of ROR 
crashes). 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of ROR-D and ROR-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of ROR crashes). 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of ROR-D and ROR-N crashes on curves and highway tangent segments 
(and therefore a decrease in surface width was consistently associated with an increase in 
the frequency of LNDP crashes). 

• Speed: an increase in speed limit was consistently associated with an increase in the 
frequency of ROR-D and ROR-N crashes. 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 consistently appeared as a factor that 
increases predicted daytime and nighttime crash frequency. 

• The percentage of population ages 75+ consistently appeared as a factor that decreases 
daytime and nighttime predicted crash frequency. 

• Factor 1 (less education, low income, and less vehicle ownership) consistently appeared 
as a factor that decreases daytime and nighttime predicted crash frequency. 

• Factor 2 (less education, high income, and less vehicle ownership) consistently appeared 
as a factor that increase daytime and nighttime predicted crash frequency. 

• Factor 3 (more education, high income, and more vehicle ownership) consistently 
appeared as a factor that increases daytime and nighttime predicted crash frequency. 
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LNDP Crashes on Rural Two-Lane Highway Segments in Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 118 and table 119 summarize the most influential predictor variables for the expected 
number of LNDP-D crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (LNDP-KAB-D) 
or fatality, incapacitating injury, nonincapacitating injury, possible injury, or PDO 
(LNDP-KABCO-D) according to random forests generated using Ohio data. The random-forest 
outputs for both crash severities are shown in figure 94 and figure 95. 

Table 118. Contributing factors for LNDP-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Percent grade Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Surface width Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percentage of population ages 75+ Decreases 
Average shoulder width Decreases 
Percentage of population ages 15–19 Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 94. Graph. Output for LNDP-KAB-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 119. Contributing factors for LNDP-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Surface width Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percentage of population ages 75+ Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Average shoulder width Decreases 
Speed limit Increases 
Percentage of population ages 15–19 Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 95. Graph. Output for LNDP-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 
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Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 120 and table 121 summarize the most influential predictor variables for the expected 
number of LNDP-N crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (LNDP-KAB-N) 
or fatality, incapacitating injury, nonincapacitating injury, possible injury, or PDO 
(LNDP-KABCO-N) according to random forests generated using Ohio data. The random-forest 
outputs for both crash severities are shown in figure 96 and figure 97. 

Table 120. Contributing factors for LNDP-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Curve radius Increases/decreases* 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percentage of population ages 15–19 Increases 
Average shoulder width Decreases 
Percentage of population ages 75+ Increases 
Surface width Decreases 
Percent grade Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 96. Graph. Output for LNDP-KAB-N crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 121. Contributing factors for LNDP-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Average shoulder width Decreases 
Percentage of population ages 15–19 Increases 
Surface width Decreases 
Percentage of population ages 75+ Decreases 
Curve radius Increases/decreases* 
Speed limit Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 97. Graph. Output for LNDP-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with LNDP crashes on rural two-lane horizontal curves and highway tangent segments 
in Ohio: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of LNDP-D and LNDP-N crashes. 

• Percent grade: an increase in percent grade was consistently associated with an increase 
in the frequency of LNDP-D and LNDP-N crashes. 

• Average shoulder width: an increase in shoulder width was consistently associated with a 
decrease in the frequency of LNDP-D and LNDP-N crashes (and therefore a decrease in 
shoulder width was consistently associated with an increase in the frequency of LNDP 
crashes). 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of LNDP-D and LNDP-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of LNDP crashes). 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of LNDP-D and LNDP-N crashes on curves and tangent segments 
(and therefore a decrease in surface width was consistently associated with an increase in 
the frequency of LNDP crashes). 

• Speed: an increase in speed limit was consistently associated with an increase in the 
frequency of LNDP-D and LNDP-N crashes. 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 consistently appeared as a factor that 
increases daytime and nighttime predicted crash frequency. 

• The percentage of the population ages 75+ consistently appeared as a factor that decreases 
daytime and nighttime predicted crash frequency. 

• Factor 1 (less education, low income, and less vehicle ownership) consistently appeared 
as a factor that decreases daytime and nighttime predicted crash frequency. 

• Factor 2 (less education, high income, and less vehicle ownership) consistently appeared 
as a factor that increases daytime and nighttime predicted crash frequency. 

• Factor 3 (more education, high income, and more vehicle ownership) consistently 
appeared as a factor that increases daytime and nighttime predicted crash frequency. 
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HEO Crashes on Rural Two-Lane Highway Segments in Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime  

Table 122 and table 123 summarize the most influential predictor variables for the expected 
number of HEO-D crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (HEO-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (HEO-KABCO-D) 
according to random forests generated using Ohio data. The random-forest outputs for both crash 
severities are shown in figure 98 and figure 99. 

Table 122. Contributing factors for HEO-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Average AADT Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Percentage of population ages 75+ Increases 
Percent grade Increases 
Average shoulder width Increases** 
Percentage of population ages 15–19 Decreases 
Curve radius Increases/decreases* 
Surface width Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 98. Graph. Output for HEO-KAB-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 123. Contributing factors for HEO-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percent grade Increases 
Percentage of population ages 75+ Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Percentage of population ages 15–19 Decreases 
Average shoulder width Increases** 
Curve radius Increases/decreases* 
Surface width Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 99. Graph. Output for HEO-KABCO-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Horizontal Curves and Highway Tangent Segments—Nighttime 

Table 124 and table 125 summarize the most influential predictor variables for the expected 
number of HEO-N crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (HEO-KAB-N) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (HEO-KABCO-N) 
according to random forests generated using Ohio data. The random-forest outputs for both crash 
severities are shown in figure 100 and figure 101. 

Table 124. Contributing factors for HEO-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Increases 
Average AADT Increases 
Curve radius Increases/decreases* 
Percentage of population ages 15–19 Increases 
Percentage of population ages 75+ Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Surface width Increases 
Average shoulder width Increases** 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Speed limit Decreases** 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 100. Graph. Output for HEO-KAB-N crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 125. Contributing factors for HEO-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Percent grade Increases 
Surface width Increases 
Curve radius Increases/decreases* 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Percentage of population ages 75+ Decreases 
Average shoulder width Increases** 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Speed limit Decreases** 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 101. Graph. Output for HEO-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with HEO crashes on rural two-lane horizontal curves and highway tangent segments 
in Ohio: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of HEO-D and HEO-N crashes. 

• Percent grade: an increase in percent grade was consistently associated with an increase 
in the frequency of HEO-D and HEO-N crashes. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of HEO-D and HEO-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of LNDP crashes). 

• Surface width: an increase in surface width was associated with an increase in the 
frequency of HEO-D and HEO-N crashes. 

There were additional roadway variables that showed relationships with HEO crash frequency, 
but they were not recommended as contributing factors due inconsistent results: 

• Average shoulder width: an increase in shoulder width was consistently associated with 
an increase in the frequency of HEO-D and HEO-N crashes (this is a counterintuitive 
finding, as an increase in shoulder width is generally associated with a decrease in 
crashes). 

• Speed: an increase in speed limit was associated with an increase in the frequency of 
HEO-D crashes (during the nighttime, an increase in speed limit was associated with a 
decrease in the frequency of HEO crashes). 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 appeared as a factor that increases the 
predicted crash frequency of nighttime crashes and a factor that decreases the predicted 
crash frequency of daytime crashes. 

• The percentage of the population ages 75+ appeared as a factor that increases the 
predicted crash frequency of HEO-KAB-D, HEO-KAB-N, and HEO-KABCO-D crashes. 
It also appeared as a factor that decreases the predicted crash frequency of 
HEO-KABCO-N crashes. 

• Factor 1 (less education, low income, and less vehicle ownership) consistently appeared 
as a factor that decreases daytime and nighttime predicted crash frequency. 

• Factor 2 (less education, high income, and less vehicle ownership) consistently appeared 
as a factor that increases daytime and nighttime predicted crash frequency. 

• Factor 3 (more education, high income, and more vehicle ownership) consistently 
appeared as a factor that increases daytime and nighttime predicted crash frequency. 



 

255 

ROLL Crashes on Rural Two-Lane Highway Segments in Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime 

Table 126 and table 127 summarize the most influential predictor variables for the expected 
number of ROLL-D crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (ROLL-KAB-D) 
or fatality, incapacitating injury, nonincapacitating injury, possible injury, or PDO 
(ROLL-KABCO-D) according to random forests generated using Ohio data. The random-forest 
outputs for both crash severities are shown in figure 102 and figure 103. 

Table 126. Contributing factors for ROLL-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Average AADT Decreases** 
Factor 1 (less education, low income, and less vehicle ownership) Increases 
Factor 3 (more education, high income, and more vehicle ownership) Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Surface width Decreases 
Percentage of population ages 15–19 Increases 
Percentage of population ages 75+ Decreases 
Average shoulder width Increases** 
Speed limit Increases 
Percent grade Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 102. Graph. Output for ROLL-KAB-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 



 

256 

Table 127. Contributing factors for ROLL-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Surface width Decreases 
Average shoulder width Decreases 
Percentage of population ages 75+ Decreases 
Average AADT Decreases** 
Percentage of population ages 15–19 Increases 
Percent grade Increases 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 103. Graph. Output for ROLL-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 
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Horizontal Curves and Highway Tangent Segments—Nighttime  

Table 128 and table 129 summarize the most influential predictor variables for the expected 
number of ROLL-N crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (ROLL-KAB-N) 
or fatality, incapacitating injury, nonincapacitating injury, possible injury, or PDO 
(ROLL-KABCO-N) according to random forests generated using Ohio data. The random-forest 
outputs for both crash severities are shown in figure 104 and figure 105. 

Table 128. Contributing factors for ROLL-KAB-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Curve radius Increases/decreases* 
Factor 2 (less education, high income, and less vehicle ownership) Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percentage of population ages 75+ Decreases 
Average AADT Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Percent grade Increases 
Surface width Increases 
Percentage of population ages 15–19 Increases 
Average shoulder width Increases** 
Speed limit Increases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 

 
Source: FHWA. 

Figure 104. Graph. Output for ROLL-KAB-N crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 
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Table 129. Contributing factors for ROLL-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Average AADT Increases 
Surface width Decreases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Curve radius Increases/decreases* 
Percent grade Increases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Percentage of population ages 75+ Increases 
Percentage of population ages 15–19 Decreases 
Speed limit Increases 
Average shoulder width Decreases 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 

 
Source: FHWA. 

Figure 105. Graph. Output for ROLL-KABCO-N crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ROLL crashes on rural two-lane horizontal curves and highway tangent segments 
in Ohio: 

• Percent grade: an increase in percent grade was consistently associated with an increase 
in the frequency of ROLL-D and ROLL-N crashes. 

• Curve radius: an increase in curve radius was consistently associated with a decrease in 
the frequency of ROLL-D and ROLL-N crashes (and therefore a decrease in curve radius 
was consistently associated with an increase in the frequency of LNDP crashes). 

• Speed: an increase in speed limit was associated with an increase in the frequency of 
ROLL-D and ROLL-N crashes. 

There were additional roadway variables that showed relationships with HEO crash frequency, 
but they were not recommended as contributing factors due to inconsistent results: 

• Average AADT: an increase in AADT was associated with an increase in the frequency of 
ROLL-D and ROLL-N crashes (during the daytime, an increase in AADT was associated 
with a decrease in the frequency of ROLL crashes). 

• Surface width: an increase in surface width was associated with a decrease in the 
frequency of ROLL-KAB-D, ROLL-KACO-D, and ROLL-KABCO-N (and therefore a 
decrease in surface width was associated with an increase in the frequency of these 
crashes). 

• Average shoulder width: an increase in shoulder width was consistently associated with 
an increase in the frequency of ROLL-KAB-D and ROLL-KAB-N crashes (this is a 
counterintuitive finding, as an increase in shoulder width is generally associated with a 
decrease in crashes). 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 appeared as a factor that increases the 
predicted crash frequency of ROLL-KAB-D, ROLL-KABCO-D, and ROLL-KAB-N 
crashes. It also appeared as a factor that decreases the predicted crash frequency of 
HEO-KABCO-N crashes. 

• The percentage of the population ages 75+ appeared as a factor that decreases the 
predicted crash frequency of ROLL-KAB-D, ROLL-KAB-N, and ROLL-KABCO-D 
crashes. It also appeared as a factor that decreases the predicted crash frequency of 
ROLL-KABCO-N crashes. 

• Factor 1 (less education, low income, and less vehicle ownership) consistently appeared 
as a factor that decreases the predicted crash frequency of ROLL-KABCO-D, 
ROLL-KAB-N, and ROLL-KABCO-N crashes. It also appeared as a factor that increases 
the predicted crash frequency of ROLL-KAB-D crashes. 

• Factor 2 (less education, high income, and less vehicle ownership) appeared as a factor 
that increases the predicted crash frequency of ROLL-KAB-D, ROLL-KABCO-D, and 
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ROLL-KABCO-N crashes. It also appeared as a factor that decreases the predicted crash 
frequency of ROLL-KAB-N crashes. 

• Factor 3 (more education, high income, and more vehicle ownership) appeared as a factor 
that increases the predicted crash frequency of ROLL-KABCO-D, ROLL-KAB-N, and 
ROLL-KABCO-N crashes. It also appeared as a factor that decreases the predicted crash 
frequency of ROLL-KAB-D crashes. 

ANG Crashes on Rural Two-Lane Highway Segments in Ohio 

Horizontal Curves and Highway Tangent Segments—Daytime  

Table 130 and table 131 summarize the most influential predictor variables for the expected 
number of ANG-D crashes on rural two-lane horizontal curves and highway tangent segments 
that result in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) or fatality, 
incapacitating injury, nonincapacitating injury, possible injury, or PDO (ANG-KABCO-D) 
according to random forests generated using Ohio data. The random-forest outputs for both crash 
severities are shown in figure 106 and figure 107. 

Table 130. Contributing factors for ANG-KAB-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Percent grade Decreases** 
Surface width Increases 
Average AADT Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Percentage of population ages 75+ Decreases 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Average shoulder width Increases** 
Speed limit Decreases** 
**Counterintuitive finding. 
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Source: FHWA. 

Figure 106. Graph. Output for ANG-KAB-D crashes on rural two-lane horizontal curves 
and highway tangent segments: Ohio. 

Table 131. Contributing factors for ANG-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Factor 2 (less education, high income, and less vehicle ownership) Increases 
Average AADT Increases 
Average shoulder width Increases** 
Factor 3 (more education, high income, and more vehicle ownership) Increases 
Percentage of population ages 15–19 Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Percent grade Decreases** 
Surface width Increases 
Percentage of population ages 75+ Increases 
Curve radius Increases/decreases* 

*Increases crash frequency when comparing curves to tangent segments/decreases crash frequency when comparing 
curves (i.e., a larger radius is associated with fewer crashes). 
**Counterintuitive finding. 
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Source: FHWA. 

Figure 107. Graph. Output for ANG-KABCO-D crashes on rural two-lane horizontal 
curves and highway tangent segments: Ohio. 

Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ANG crashes on rural two-lane horizontal curves and highway tangent segments 
in Ohio: 

• Average AADT: an increase in AADT was consistently associated with an increase in the 
frequency of ANG-D crashes. 

• Curve radius: an increase in curve radius was associated with a decrease in the frequency 
of ANG-KABCO-D crashes (and therefore a decrease in curve radius was consistently 
associated with an increase in the frequency of ANG-KABCO-D crashes). 

• Surface width: an increase in surface width was consistently associated with an increase 
in the frequency of ANG-D crashes. 

There were additional roadway variables that showed relationships with HEO crash frequency, 
but they were not recommended as contributing factors due to inconsistent results: 

• Percent grade: an increase in percent grade was consistently associated with a decrease in 
the frequency of ANG-D crashes (this is a counterintuitive finding, as an increase in 
percent grade is generally associated with an increase in crashes). 

• Average shoulder width: an increase in shoulder width was consistently associated with 
an increase in the frequency of ANG-D crashes (this is a counterintuitive finding, as an 
increase in shoulder width is generally associated with a decrease in crashes). 

• Speed: an increase in speed limit was consistently associated with a decrease in the 
frequency of ANG-D crashes. 



 

263 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 consistently appeared as a factor that 
increases predicted crash frequency. 

• The percentage of the population ages 75+ appeared as a factor that decreases the 
predicted crash frequency of ANG-KAB-D crashes and a factor that increases the 
predicted crash frequency of ANG-KABCO-D crashes. 

• Factor 1 (less education, low income, and less vehicle ownership) consistently appeared 
as a factor that decreases predicted crash frequency. 

• Factor 2 (less education, high income, and less vehicle ownership) consistently appeared 
as a factor that increases predicted crash frequency. 

• Factor 3 (more education, high income, and more vehicle ownership) consistently 
appeared as a factor that increases predicted crash frequency. 

ANG Crashes at Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads in 
Ohio 

Daytime 

Table 132 and table 133 summarize the most influential predictor variables for the expected 
number of ANG-D crashes at four-leg stop-controlled intersections (with stop control on the 
minor road) on urban, two-lane roads that result in fatality, incapacitating injury, or 
nonincapacitating injury (ANG-KAB-D) or fatality, incapacitating injury, nonincapacitating 
injury, possible injury, or PDO (ANG-KABCO-D) according to random forests generated using 
Ohio data. The random-forest outputs for both crash severities are shown in figure 108 and  
figure 109. 

Table 132. Contributing factors for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Speed limit Increases 
Factor 1 (less education, low income, and less vehicle ownership) Decreases 
Cross street AADT Increases 
Factor 2 (less education, high income, and less vehicle ownership) Decreases 
Percentage of households with any number of vehicles Increases 
Percentage of households with 0 vehicles Decreases 
Percentage of population ages 75+ Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Increases 
Mainline AADT Decreases** 
Average annual rainfall totals Decreases 
Percentage of population ages 15–19 Decreases 

**Counterintuitive finding. 
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Source: FHWA. 

Figure 108. Graph. Output for ANG-KAB-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Table 133. Contributing factors for ANG-KABCO-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Speed limit Increases 
Mainline AADT Increases 
Factor 1 (no education and low income) Decreases 
Percentage of households with 0 vehicles Increases** 
Percentage of households with any number of vehicles Decreases** 
Percentage of population ages 75+ Decreases 
Average annual rainfall totals Decreases 
Annual average number of days with a minimum temperature of ≤32℉ Increases 
Factor 2 (diploma education and medium income) Decreases 
Average annual snowfall totals Increases 
Average annual winter minimum temperature Decreases** 
Percentage of population ages 15–19 Decreases 

**Counterintuitive finding. 
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Source: FHWA. 

Figure 109. Graph. Output for ANG-KABCO-D crashes at four-leg stop-controlled 
intersections on urban two-lane roads: Ohio. 

Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ANG crashes at four-leg stop-controlled intersections (with stop control on the 
minor road) on urban two-lane roads in Ohio: 

• Cross Street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-D crashes at four-leg stop-controlled intersections on urban 
two-lane roads. 

• Speed: an increase in speed was consistently associated with an increase in the frequency 
of ANG-D crashes at four-leg stop-controlled intersections on urban two-lane roads. 

There were additional roadway variables that showed relationships with HEO crash frequency, 
but they were not recommended as contributing factors due to inconsistent results: 

• Mainline AADT: an increase in mainline AADT was associated with an increase in the 
frequency of ANG-KABCO-D crashes at four-leg stop-controlled intersections on urban 
two-lane roads. 
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With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• The percentage of the population ages 15–19 consistently appeared as a factor that 
decreases predicted crash frequency. 

• The percentage of the population ages 75+ consistently appeared as a factor that decreases 
predicted crash frequency. 

• Factor 1 (no education and low income) consistently appeared as a factor that decreases 
predicted crash frequency. 

• Factor 2 (diploma education and medium income) consistently appeared as a factor that 
decreases predicted crash frequency. 

• The percentage of households with no vehicles appeared as a factor that increases the 
predicted crash frequency of ANG-KAB-D crashes and as a factor that decreases the 
predicted crash frequency of ANG-KABCO-D crashes. 

• The percentage of households with any number of vehicles appeared as a factor that 
increases the predicted crash frequency of ANG-KAB-D crashes and as a factor that 
decreases the predicted crash frequency of ANG-KABCO-D crashes. 

• Average annual rainfall totals consistently appeared as a factor that decreases predicted 
crash frequency. 

• Average annual snowfall totals appeared as a factor that increases the predicted crash 
frequency of ANG-KABCO-D crashes. 

• Average annual number of days with a minimum temperature of ≤32℉ appeared 
consistently as a factor that increases predicted crash frequency. 

ANG Crashes at Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads in 
Ohio 

Daytime 

Table 134 and table 135 summarize the most influential predictor variables for the expected 
number of ANG-D crashes at four-leg signalized intersections on urban multilane undivided 
roads that result in fatality, incapacitating injury, or nonincapacitating injury (ANG-KAB-D) 
or fatality, incapacitating injury, nonincapacitating injury, possible injury, or PDO 
(ANG-KABCO-D) according to random forests generated using Ohio data. The random-forest 
outputs for both crash severities are shown in figure 110 and figure 111. 
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Table 134. Contributing factors for ANG-KAB-D crashes at four-leg signalized 
intersections on urban multilane undivided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Mainline AADT Increases 
Cross street AADT Increases 
Factor 1 (no education and low income) Increases** 
Speed limit Increases 
Annual average number of days with a minimum temperature of ≤32℉ Increases 
Percentage of households with any number of vehicles Decreases** 
Percentage of households with 0 vehicles Increases** 
Average annual winter minimum temperature Decreases** 
Factor 2 (diploma education and medium income) Decreases** 
Average annual snowfall totals Decreases** 
Average annual minimum temperature Increases 
Lane width Decreases 

**Counterintuitive finding. 

 
Source: FHWA. 

Figure 110. Graph. Output for ANG-KAB-D crashes at four-leg signalized intersections on 
urban multilane undivided roads: Ohio. 
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Table 135. Contributing factors for ANG-KABCO-D crashes at four-leg signalized 
intersections on urban multilane undivided roads: Ohio. 

Variable 
Impact on Crash-Frequency 

Predictions 
Cross street AADT Increases 
Mainline AADT Increases 
Annual average number of days with a minimum temperature of ≤32℉ Decreases** 
Annual average winter minimum temperature Increases 
Percentage of households with 0 vehicles Increases** 
Percentage of households with any number of vehicles Decreases** 
Factor 1 (no education and low income) Decreases 
Average annual snowfall totals Decreases** 
Speed limit Increases 
Average annual maximum temperature Increases 
Number of channelized left-turn lanes Increases 
Average annual minimum temperature Increases 
Factor 2 (diploma education and medium income) Decreases** 

**Counterintuitive finding. 

 
Source: FHWA. 

Figure 111. Graph. Output for ANG-KABCO-D crashes at four-leg signalized intersections 
on urban multilane undivided roads: Ohio. 
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Discussion 

Based on the analysis, the research team recommends the following roadway contributing factors 
associated with ANG crashes at four-leg signalized intersections on urban multilane undivided 
roads in Ohio: 

• Mainline AADT: an increase in mainline AADT was associated with an increase in the 
frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads. 

• Cross Street AADT: an increase in cross street AADT was associated with an increase in 
the frequency of ANG-D crashes at four-leg signalized intersections on urban multilane 
undivided roads. 

• Speed: an increase in speed was consistently associated with an increase in the frequency 
of ANG-D crashes at four-leg signalized intersections on urban multilane undivided 
roads. 

There were additional roadway variables that showed relationships with HEO crash frequency, 
but they were not recommended as contributing factors due to inconsistent results: 

• Lane width: an increase in lane width was associated with a decrease in the frequency of 
ANG-KAB-D crashes at four-leg stop signalized intersections on urban multilane 
undivided roads. 

• Number of approaches with left turn lanes: an increase in the number of approaches with 
left-turn lanes at an intersection was associated with an increase in the frequency of 
ANG-KABCO-D crashes at four-leg stop signalized intersections on urban multilane 
undivided roads. 

With respect to weather and sociodemographic characteristics, the following factors were 
observed: 

• Factor 1 (no education and low income) appeared as a factor that decreases the predicted 
crash frequency of ANG-KABCO-D crashes and a factor that increases the predicted 
crash frequency of ANG-KAB-D crashes. 

• Factor 2 (diploma education and medium income) consistently appeared as a factor that 
decreases predicted crash frequency. 

• The percentage of households with no vehicles consistently appeared as a factor that 
increases predicted crash frequency. 

• The percentage of households with any number of vehicles consistently appeared as a 
factor that decreases predicted crash frequency. 

• Average annual snowfall totals consistently appeared as a factor that decreases predicted 
crash frequency. 

• Average annual minimum temperature consistently appeared as a factor that increases 
predicted crash frequency. 
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SUMMARY OF RESULTS FROM THE CONTRIBUTING-FACTOR ANALYSIS 

The previous sections provided the updated analysis for Ohio data using factors to reduce the 
number of socioeconomic variables and to account for high correlation between them. The 
updated analysis showed good results with respect to nonintersection FCFTs, but the results for 
the intersections FCFTs were not as expected. 

Intersection FCFTs 

The contributing-factor analysis for urban intersections produced consistent results with AADT 
and speed limit showing as roadway contributing factors. The analysis, however, did not show 
consistent results with respect to socioeconomic variables. The percentage of households with no 
vehicles came up as a factor that increases predicted crash frequency, whereas the percentage of 
households with any number of vehicles came up as factor that decreases predicted crash 
frequency. Similarly, Factor 1 (no education and low income) showed up as a factor that 
increases predicted crash frequency at urban signalized intersections. Weather variables also 
showed some counterintuitive results; for example, the average annual winter minimum 
temperature and average annual snowfall totals showed up as factors that decrease crash 
frequencies for urban signalized intersections when, for the same site type, the average annual 
minimum temperature showed up as a factor that increases predicted crash frequency. 

Nonintersection FCFTs 

The contributing-factor analysis for rural highway segments produced consistent results with 
AADT, percent grade, curve radius, and average shoulder width showing as roadway contributing 
factors. In almost all cases, the percentage of the population ages 15–19 showed up as a factor 
that increases predicted crash frequency, while the percentage of the population ages 75+ showed 
up as factor that decreases predicted crash frequency. For socioeconomic factors, in almost all 
cases, Factor 1 (less education, low income, and less vehicle ownership) showed up as a factor 
that decreases predictive crash frequency, whereas Factor 2 (less education, high income, and less 
vehicle ownership) and Factor 3 (more education, high income, and more vehicle ownership) 
showed up as factors that increase predicted crash frequency. 
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APPENDIX H. OBSERVING PREDICTION MSEs TO EXPLORE CONTRIBUTIONS 
OF SOCIOECONOMIC VARIABLES 

To further explore the contributions of socioeconomic variables to the random-forest analysis, the 
research team calculated and compared prediction MSEs using random-forest predictions from 
analyses using data with and without socioeconomic variables. For these comparisons, the 
research team used daytime crashes on horizontal curves and tangent segments on rural two-lane 
roads in Ohio. Random forests were estimated using only roadway variables and compared to the 
models reported in appendix G (the roadway-only random-forest outputs are provided in  
figure 112 and figure 113). 

MSE values for predictions from the roadway-only random forests were compared to MSE 
values for predictions from random forests presented in appendix G, which included 
socioeconomic variables as factors to account for the high correlation between the different 
socioeconomic variables. 

Table 136 provides a comparison of the MSEs for the two analyses. 

Table 136. Comparison of MSEs for analyses using data with and without socioeconomic 
variables. 

Crash-Severity Type 
Predictions with Socioeconomic 

Variables 
Predictions without Socioeconomic 

Variables 
ROR-KAB-D 7.19 9.39 
ROR-KABCO-D 30.99 41.65 
LNDP-KAB-D 9.11 12.18 
LNDP-KABCO-D 35.05 47.80 
ROLL-KAB-D 1.47 1.85 
ROLL-KABCO-D 2.36 3.04 
HEO-KAB-D 0.23 0.29 
HEO-KABCO-D 0.29 0.37 
ANG-KAB-D 0.27 0.31 
ANG-KABCO-D 1.37 1.77 

When comparing MSEs, lower values are better as they suggest that predicted values were closer 
to observed values. It can be seen from table 136 that MSEs for predictions using data with 
socioeconomic variables are consistently 20- to 30-percent lower than MSEs for predictions 
using data without socioeconomic variables. 

Based on this analysis, inclusion of socioeconomic variables in analyses leads to improved crash 
predictions. 
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Source: FHWA. 

Figure 112. Graph. Output for ROR-KAB-D crashes on rural two-lane horizontal curves 
and tangent segments: Ohio. 

 
Source: FHWA. 

Figure 113. Graph. Output for ROR-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 
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Source: FHWA. 

Figure 114. Graph. Output for LNDP-KAB-D crashes on rural two-lane horizontal curves 
and tangent segments: Ohio. 

 
Source: FHWA. 

Figure 115. Graph. Output for LNDP-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 
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Source: FHWA. 

Figure 116. Graph. Output for ROLL-KAB-D crashes on rural two-lane horizontal curves 
and tangent segments: Ohio. 

 
Source: FHWA. 

Figure 117. Graph. Output for ROLL-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 
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Source: FHWA. 

Figure 118. Graph. Output for HEO-KAB-D crashes on rural two-lane horizontal curves 
and tangent segments: Ohio. 

 
Source: FHWA. 

Figure 119. Graph. Output for HEO-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio. 
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Source: FHWA. 

Figure 120. Graph. Output for ANG-KAB-D crashes on rural two-lane horizontal curves 
and tangent segments: Ohio. 

 
Source: FHWA. 

Figure 121. Graph. Output for ANG-KABCO-D crashes on rural two-lane horizontal 
curves and tangent segments: Ohio.



 

277 

REFERENCES 

AAA Foundation for Traffic Safety. 2012. usRAP Coding Manual for Star Ratings and Safer 
Roads Investment Plans. Washington, DC: American Automobile Association Foundation 
for Traffic Safety. 

AASHTO. 2010. Highway Safety Manual. Washington, DC: American Association of State 
Highway and Transportation Officials. Accessed May 15, 2020. 
http://www.highwaysafetymanual.org/Pages/default.aspx. 

AASHTO. 2014. Highway Safety Manual 1st Edition Supplement. Washington, DC: American 
Association of State Highway and Transportation Officials. Accessed May 15, 2020. 
https://store.transportation.org. 

AASHTO. n.d. “AAHSHTOWare Safety Analyst.” Accessed May 12, 2020. 
http://www.safetyanalyst.org. 

Albin, R., V. Brinkly, J. Cheung, F. Julian, C. Satterfield, W. Stein, E. Donnell, et al. 2016. 
Low-Cost Treatments for Horizontal Curve Safety 2016. Report number FHWA-SA-15-
084. Washington, DC: Federal Highway Administration. Accessed May 15, 2020. 
https://safety.fhwa.dot.gov/roadway_dept/horicurves/fhwasa15084. 

Al-Kaisy, A., L. Ewam, D. Venaziano, and F. Hossain. 2015. Risk factors associated with high 
potential for serious crashes. Report No. FHWA-OR-RD-16-05, Washington, DC: 
Federal Highway Administration; Salem, OR: Oregon Department of Transportation. 
Accessed May 15, 2020. https://ruralsafetycenter.org/resources/list/risk-factors-
associated-with-high-potential-for-serious-crashes. 

Breiman, L., and A. Cutler. 2013. “Random Forests” (website). Accessed January 19, 2018. 
http://www.stat.berkeley.edu/~breiman/RandomForests. 

Brown, J. V., M. Martello, and R. R. Souleyrette. 2011. Minnesota Department of Transportation 
Traffic Safety Analysis Software State of the Art. Report No. MN/RC 2011-10. Saint Paul, 
MN: Minnesota Department of Transportation. Accessed May 15, 2020. 
http://www.dot.state.mn.us/research/TS/2011/2011-10.pdf. 

Caldwell, R. C., and E. M. Wilson. 1996. “Variable Safety Improvements for Unpaved Roads.” 
Presented at the 1996 Institute of Transportation Engineers International Conference, 
Dana Point, CA, March 1996. 

Calvert, E., D. Haiar, and E. Wilson. 1999. “Development of a Field Evaluation Guide for 
Unpaved Rural Roads.” Transportation Research Record 1652. Accepted May 15, 2020. 
https://journals.sagepub.com/doi/pdf/10.3141/1652-11. 

Carlin, B. P. and T. A. Louis. 2008. Bayesian Methods for Data Analysis. Boca Raton, FL: 
Chapman and Hall. 

http://www.highwaysafetymanual.org/Pages/default.aspx
https://store.transportation.org/
http://www.safetyanalyst.org/
https://safety.fhwa.dot.gov/roadway_dept/horicurves/fhwasa15084/
https://ruralsafetycenter.org/resources/list/risk-factors-associated-with-high-potential-for-serious-crashes/
https://ruralsafetycenter.org/resources/list/risk-factors-associated-with-high-potential-for-serious-crashes/
http://www.stat.berkeley.edu/%7Ebreiman/RandomForests/
http://www.dot.state.mn.us/research/TS/2011/2011-10.pdf
https://journals.sagepub.com/doi/pdf/10.3141/1652-11


 

278 

Cato. J., A. Ghafoori, A. Kaplan, J. Marandino, P. Ott, and E. Gonzales. 2013. Development of a 
Systemic Road Safety Analysis Tool – Roadway Departure Crashes at Bridges in Salem 
County, New Jersey. Piscataway, NJ: Rutgers University. 

Chatterjee, S., and A. S. Hadi. 2012. Regression Analysis by Example. 5th ed. Hoboken, FL: 
Wiley. 

Collett, D. 2003. Modelling Survival Data in Medical Research. 2nd ed. Boca Raton, FL: 
Chapman & Hall/CRC. Accessed May 15, 2020. 
https://www.worldcat.org/title/modelling-survival-data-in-medical-
research/oclc/64401278. 

Cressie, N. A. C. 1993. Statistics for Spatial Data. New York, NY: Wiley. 

Cressie, N. A. C., and C. K. Wikle. 2011. Statistics for Spatio-temporal Data. Hoboken, NJ: 
Wiley. Accessed May 15, 2020. https://www.wiley.com/en-
us/Statistics+for+Spatio+Temporal+Data-p-9780471692744. 

Dobson, A. J., and A. G. Barnett. 2008. An Introduction to Generalized Linear Models. 3rd ed. 
Boca Raton, FL: Chapman & Hall. 

Faraway, J. J. 2006. Extending the Linear Model with R: Generalized Linear, Mixed Effects and 
Nonparametric Regression Models. Boca Raton, FL: Chapman & Hall/CRC. 

Faraway, J. J. 2015. Linear Models with R. 2nd ed. Boca Raton, FL: Taylor & Francis. Accessed 
May 15, 2020. http://www.utstat.toronto.edu/~brunner/books/LinearModelsWithR.pdf. 

FHWA. 2004. Toolbox of Countermeasures and Their Potential Effectiveness to Make 
Intersections Safer. Washington, DC: Federal Highway Administration. Accessed May 
15, 2020. https://www.ite.org/pub/?id=e26c7e9c-2354-d714-5181-4cc79fba5459. 

FHWA. 2008a. Toolbox of Countermeasures and Their Potential Effectiveness for Roadway 
Departure Crashes. Report No. FHWA-SA-07-013. Washington, DC: Federal Highway 
Administration. Accessed May 15, 2020. 
https://safety.fhwa.dot.gov/tools/crf/resources/briefs/rdwydepartissue.cfm. 

FHWA. 2008b. Toolbox of Countermeasures and Their Potential Effectiveness for Pedestrian 
Crashes. Report No. FHWA-SA-014. Washington, DC: Federal Highway Administration. 
Accessed May 15, 2020. 
http://www.pedbikeinfo.org/cms/downloads/pedToolboxofCountermeasures2013.pdf. 

FHWA. 2009. Toolbox of Countermeasures and Their Potential Effectiveness for Intersection 
Crashes. Report No. FHWA-SA-10-005. Washington, DC: Federal Highway 
Administration. Accessed May 15, 2020. 
https://cdn.ymaws.com/www.azace.org/resource/resmgr/imported/CrashReductionInterse
ctionIssueBrief.pdf. 

https://www.worldcat.org/title/modelling-survival-data-in-medical-research/oclc/64401278
https://www.worldcat.org/title/modelling-survival-data-in-medical-research/oclc/64401278
https://www.wiley.com/en-us/Statistics+for+Spatio+Temporal+Data-p-9780471692744
https://www.wiley.com/en-us/Statistics+for+Spatio+Temporal+Data-p-9780471692744
http://www.utstat.toronto.edu/%7Ebrunner/books/LinearModelsWithR.pdf
https://www.ite.org/pub/?id=e26c7e9c-2354-d714-5181-4cc79fba5459
https://safety.fhwa.dot.gov/tools/crf/resources/briefs/rdwydepartissue.cfm
http://www.pedbikeinfo.org/cms/downloads/pedToolboxofCountermeasures2013.pdf
https://cdn.ymaws.com/www.azace.org/resource/resmgr/imported/CrashReductionIntersectionIssueBrief.pdf
https://cdn.ymaws.com/www.azace.org/resource/resmgr/imported/CrashReductionIntersectionIssueBrief.pdf


 

279 

FHWA. 2012. Manual on Uniform Traffic Control Devices, 2009 Edition with Revision Numbers 
1 and 2. Washington, DC: Federal Highway Administration. Accessed May 15, 2020. 
https://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm. 

FHWA. 2014. Local and Rural Road Safety Briefing Sheets: Applying the Systemic Safety 
Approach on Local Roads. Report No. FHWA-SA-14-081. Washington, DC: Federal 
Highway Administration. Accessed May 15, 2020. 
https://safety.fhwa.dot.gov/local_rural/training/fhwasa14081. 

FHWA. 2015a. “Intersection Safety” (website). Accessed January 19, 2018. 
https://safety.fhwa.dot.gov/intersection. 

FHWA. 2015b. Intersection Safety Strategies Brochure. 2nd ed. Washington, DC: Federal 
Highway Administration. Accessed May 15, 2020. 
https://safety.fhwa.dot.gov/intersection/conventional/signalized. 

FHWA. 2017a. “Proven Safety Countermeasures” (website). Accessed January 19, 2018. 
https://safety.fhwa.dot.gov/provencountermeasures. 

FHWA. 2017b. “Roadway Departure Safety” (website). Accessed January 19, 2018. 
https://safety.fhwa.dot.gov/roadway_dept. 

FHWA. 2018a. “CMF Clearinghouse. 2018a” (website). Accessed January 19, 2018. 
http://www.cmfclearinghouse.org. 

FHWA. 2018b. “CMF Clearinghouse State Selected CMF Lists” (website). Accessed January 19, 
2018. http://www.cmfclearinghouse.org/stateselectedlist.cfm. 

FHWA. 2018c. “Highway Safety Information System (HSIS)” (website). Accessed January 19, 
2018. https://www.hsisinfo.org. 

FHWA. 2018d. “Interactive Highway Safety Design Model (IHSDM)” (website). Accessed 
January 19, 2018. https://highways.dot.gov/safety/interactive-highway-safety-design-
model/interactive-highway-safety-design-model-ihsdm. 

FHWA. 2018e. “Roadway Safety Data Program” (website). Accessed January 19, 2018. 
https://safety.fhwa.dot.gov/rsdp. 

FHWA. 2018f. “PEDSAFE: Pedestrian Safety Guide and Countermeasure Selection System” 
(website). Accessed January 19, 2018. http://www.pedbikesafe.org/PEDSAFE. 

FHWA. 2018g. “BIKESAFE: Bicycle Safety Guide and Countermeasure Selection System” 
(website). Accessed January 19, 2018. http://www.pedbikesafe.org/bikesafe. 

Fink, K., and R. Krammes. 1995. “Tangent Length and Sight Distance Effects on Accident Rates 
at Horizontal Curves on Rural Two-Lane Highways.” Transportation Research Record 
1500: 162–168. Accessed May 15, 2020. 
http://onlinepubs.trb.org/Onlinepubs/trr/1995/1500/1500-020.pdf. 

https://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf_index.htm
https://safety.fhwa.dot.gov/local_rural/training/fhwasa14081/
https://safety.fhwa.dot.gov/intersection/
https://safety.fhwa.dot.gov/intersection/conventional/signalized/
https://safety.fhwa.dot.gov/provencountermeasures/
https://safety.fhwa.dot.gov/roadway_dept/
http://www.cmfclearinghouse.org/
http://www.cmfclearinghouse.org/stateselectedlist.cfm
https://www.hsisinfo.org/
https://highways.dot.gov/safety/interactive-highway-safety-design-model/interactive-highway-safety-design-model-ihsdm
https://highways.dot.gov/safety/interactive-highway-safety-design-model/interactive-highway-safety-design-model-ihsdm
https://safety.fhwa.dot.gov/rsdp/
http://www.pedbikesafe.org/PEDSAFE/
http://www.pedbikesafe.org/bikesafe/
http://onlinepubs.trb.org/Onlinepubs/trr/1995/1500/1500-020.pdf


 

280 

Fitzmaurice, G. M., N. M. Laird, and J. H. Ware. 2011. Applied Longitudinal Analysis. 2nd ed. 
Hoboken, NJ: Wiley. Accessed May 15, 2020. 
https://content.sph.harvard.edu/fitzmaur/ala2e. 

Fitzpatrick, K., W. Schneider Ⅳ, and E. Park. 2005. Comparisons of Crashes on Rural Two-Lane 
and Four-Lane Highways in Texas. Report No. FHWA/TX-06/0-4618-1. Austin, TX: 
Texas Department of Transportation. Accessed May 15, 2020. 
https://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-4618-1.pdf. 

Fitzpatrick, K., E. Park, and W. Schneider Ⅳ. 2008. “Potential Accident Modification Factors for 
Driveway Density on Rural Highways from Texas Data.” Transportation Research 
Record 2083: 49–61. Accessed May 15, 2020. 
https://journals.sagepub.com/doi/10.3141/2083-06?icid=int.sj-abstract.similar-articles.2. 

FMCSA. 2016. “MCMIS Catalog and Documentation” (website). Accessed January 19, 2018. 
https://ask.fmcsa.dot.gov/app/mcmiscatalog/mcmishome. 

FTA. 2018. “The National Transit Database (NTD)” (website). Accessed January 19, 2018. 
https://www.transit.dot.gov/ntd. 

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2013. Bayesian 
Data Analysis. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC. Accessed May 15, 2020. 
https://statisticalsupportandresearch.files.wordpress.com/2017/11/bayesian_data_analysis.
pdf. 

Goodwin, A., B. Kirley, L. Sandt, W. Hall, L. Thomas, N. O’Brien, and D. Summerlin. 2013. 
Countermeasures That Work: A Highway Safety Countermeasure Guide for State 
Highway Safety Offices, Seventh Edition, 2013. Report No. DOT-HS-811-727. 
Washington, DC: National Highway Traffic Safety Administration. Accessed May 15, 
2020. http://www.nhtsa.gov/staticfiles/nti/pdf/811727.pdf. 

Google. 2018. “Google® Street View™”. Google (website). Accessed January 19, 2018. 
https://www.google.com/streetview. 

Gross, F., T. Harmon, G. Bahar, and K. Peach. 2016. Reliability of Safety Management Methods: 
Systemic Safety Programs. Report No. FHWA-SA-16-041. Washington, DC: Federal 
Highway Administration. Accessed May 15, 2020. 
https://safety.fhwa.dot.gov/rsdp/downloads/fhwasa16041.pdf. 

Hallmark. S., D. Veneziano, T. McDonald, J. Graham, K. Bauer, R. Patel, and F. Council. 2006. 
Safety Impacts of Pavement Edge Drop-Offs. Washington, DC: Foundation for Traffic 
Safety. Accessed May 15, 2020. https://www.semanticscholar.org/paper/Safety-Impacts-
of-Pavement-Edge-Drop-Offs-Hallmark-
Veneziano/519e19e603a8c783d4bfb54a6c250d05af9ea60f. 

https://content.sph.harvard.edu/fitzmaur/ala2e/
https://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-4618-1.pdf
https://journals.sagepub.com/doi/10.3141/2083-06?icid=int.sj-abstract.similar-articles.2
https://ask.fmcsa.dot.gov/app/mcmiscatalog/mcmishome
https://www.transit.dot.gov/ntd
https://statisticalsupportandresearch.files.wordpress.com/2017/11/bayesian_data_analysis.pdf
https://statisticalsupportandresearch.files.wordpress.com/2017/11/bayesian_data_analysis.pdf
http://www.nhtsa.gov/staticfiles/nti/pdf/811727.pdf
https://www.google.com/streetview/
https://safety.fhwa.dot.gov/rsdp/downloads/fhwasa16041.pdf
https://www.semanticscholar.org/paper/Safety-Impacts-of-Pavement-Edge-Drop-Offs-Hallmark-Veneziano/519e19e603a8c783d4bfb54a6c250d05af9ea60f
https://www.semanticscholar.org/paper/Safety-Impacts-of-Pavement-Edge-Drop-Offs-Hallmark-Veneziano/519e19e603a8c783d4bfb54a6c250d05af9ea60f
https://www.semanticscholar.org/paper/Safety-Impacts-of-Pavement-Edge-Drop-Offs-Hallmark-Veneziano/519e19e603a8c783d4bfb54a6c250d05af9ea60f


 

281 

Harkey. D., R. Srinivasan, J. Baek, F. Council, K. Eccles, N. Lefler, F. Gross, et al. 2008. 
NCHRP Report 617: Accident Modification Factors for Traffic Engineering and ITS 
Improvements. Washington, DC: Transportation Research Board. Accessed May 15, 
2020. http://www.trb.org/Publications/Blurbs/156844.aspx. 

Harwood, D. W., R. R. Souleyrette, M. A. Fields, and E. R. Green. 2013. “Comparison of 
Countermeasure Selection Methods for Use in Road Safety Management.” Presented at 
the 92nd Transportation Research Board Annual Meeting, Washington, DC. Accessed 
May 15, 2020. https://trid.trb.org/view.aspx?id=1287952. 

Hastie, T., Tibshirani, R. and Friedman, J. H. 2009. The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction. 2nd ed. New York, NY: Springer. Accessed May 15, 
2020. https://web.stanford.edu/~hastie/ElemStatLearn/. 

Hedeker, D. R., and R. D. Gibbons. 2006. Longitudinal Data Analysis. Hoboken, NJ: 
Wiley-Interscience. 

Hoff, P. 2009. A First Course in Bayesian Statistical Methods. New York: Springer-Verlag. 
Accessed May 15, 2020. https://link.springer.com/book/10.1007/978-0-387-92407-6. 

ITE. 2015. “Unsignalized Intersection Improvement Guide” (website). Accessed January 19, 
2018. http://www.ite.org/uiig. 

James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning: 
With Applications in R. New York, NY: Springer. Accessed May 15, 2020. 
https://link.springer.com/article/10.1007/s13253-014-0179-9. 

Karlaftis, M. and I. Golias. 2002. “Effects of Road Geometry and Traffic Volumes on Rural 
Roadway Accident Rates.” Accident Analysis and Prevention 34, 2: 357–365. Accessed 
May 15, 2020. 
https://www.sciencedirect.com/science/article/abs/pii/S0001457501000331. 

Karwa, V., A. B. Slavković, and E. T. Donnell. 2011. “Causal inference in transportation safety 
studies: Comparison of potential outcomes and causal diagrams.” The Annals of Applied 
Statistics 5, 2b: 1428–1455. Accessed May 15, 2020. 
https://projecteuclid.org/euclid.aoas/1310562728. 

Kleinbaum, D. G. and M. Klein. 2012. Survival Analysis: A Self-learning Text. 2nd ed. 
New York, NY: Springer. Accessed May 15, 2020. 
https://www.springer.com/gp/book/9781441966452. 

Knapp. K., S. Hallmark, and G. Bou-Saab. 2014. Systemic Safety Improvement Risk Factor 
Evaluation and Countermeasure Summary: Final Report. Report No. WBS 25-1121-
0003-140. Lincoln, NE: Mid-America Transportation Center. Accessed May 15, 2020. 
https://intrans.iastate.edu/research/completed/systemic-safety-improvement-risk-factor-
evaluation-and-countermeasure-summary. 

http://www.trb.org/Publications/Blurbs/156844.aspx
https://trid.trb.org/view.aspx?id=1287952
https://web.stanford.edu/%7Ehastie/ElemStatLearn/
https://link.springer.com/book/10.1007/978-0-387-92407-6
http://www.ite.org/uiig/
https://link.springer.com/article/10.1007/s13253-014-0179-9
https://www.sciencedirect.com/science/article/abs/pii/S0001457501000331
https://projecteuclid.org/euclid.aoas/1310562728
https://www.springer.com/gp/book/9781441966452
https://intrans.iastate.edu/research/completed/systemic-safety-improvement-risk-factor-evaluation-and-countermeasure-summary/
https://intrans.iastate.edu/research/completed/systemic-safety-improvement-risk-factor-evaluation-and-countermeasure-summary/


 

282 

Lawson, A. B. 2013. Bayesian Disease Mapping: Hierarchical Modeling in Spatial 
Epidemiology. 2nd ed. Boca Raton, FL: Taylor & Francis. Accessed May 15, 2020. 
https://doi.org/10.1201/b14073. 

Lee, J., and D. Nam. 2003. “Run-Off-Roadway Accident Frequency Models by Type of Accident 
Severity.” Journal of the Eastern Asia Society for Transportation Studies 5. 

Li, X., Y. Liu, A. M. Asce, Z. Gao, and D. Liu. 2016. “Decision Tree Based Station-Level Rail 
Transit Ridership Forecast.” Journal of Urban Planning and Development 142, 4. 
Accessed May 15, 2020. https://ascelibrary.org/doi/10.1061/%28ASCE%29UP.1943-
5444.0000331. 

Liu, C. and R. Subramanian. 2009. Factors Related to Fatal Single-Vehicle Run-Off-Road 
Crashes. Report No. DOT-HS-811-232. Washington, DC: National Highway Traffic 
Safety Administration. Accessed May 15, 2020. 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811232. 

Liu, C. and T. Ye. 2011. Run-Off-Road Crashes: An On-Scene Perspective. Report No. DOT-HS-
811-500. Washington, DC: National Highway Traffic Safety Administration. Accessed 
May 15, 2020. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811500. 

Lord, D., D. Middleton, and J. Whitrace. 2005. “Does separating trucks from other traffic 
improve overall safety?” Transportation Research Record 1922: 156–166. Accessed May 
15, 2020. https://journals.sagepub.com/doi/abs/10.1177/0361198105192200120. 

Lord, D., M. Brewer, K. Fitzpatrick, S. Geedipally, and Y. Peng. 2011. Analysis of Roadway 
Departure Crashes on Two-Lane Rural Roads in Texas. Report No. FHWA/TX-11/0-
6031-1. Austin, TX: Texas Department of Transportation. Accessed May 15, 2020. 
https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6031-1.pdf. 

Mahgoub, H., A. Selim, and K. C. Pramod. 2011. “Quantitative Assessment of Local Rural Road 
Safety – Case Study.” Presented at the 90th Transportation Research Board Annual 
Meeting, Washington, DC. Accessed May 15, 2020. https://trid.trb.org/view/1093226. 

McCullagh, P., J. A. Nelder. 1994. Generalized Linear Models. 2nd ed. London, UK: Chapman 
& Hall. 

Miaou, S. 1994. “The Relationship between Truck Accidents and Geometric Design of Road 
Sections: Poisson versus Negative Binomial Regressions.” Accident Analysis and 
Prevention 26, 4: 471–482. Accessed May 15, 2020. 
https://www.sciencedirect.com/science/article/abs/pii/0001457594900388. 

Milton, J., and F. Mannering. 1996. The Relationship between Highway Geometrics, Traffic 
Related Elements, and Motor Vehicle Accidents. Report No. WA-RD 403.1. Olympia, 
WA: Washington State Department of Transportation. Accessed May 15, 2020. 
https://www.wsdot.wa.gov/research/reports/fullreports/403.1.pdf. 

https://doi.org/10.1201/b14073
https://ascelibrary.org/doi/10.1061/%28ASCE%29UP.1943-5444.0000331
https://ascelibrary.org/doi/10.1061/%28ASCE%29UP.1943-5444.0000331
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811232
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811500
https://journals.sagepub.com/doi/abs/10.1177/0361198105192200120
https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6031-1.pdf
https://trid.trb.org/view/1093226
https://www.sciencedirect.com/science/article/abs/pii/0001457594900388
https://www.wsdot.wa.gov/research/reports/fullreports/403.1.pdf


 

283 

Milton, J., and F. Mannering. 1998. “The relationship among highway geometrics, traffic-related 
elements and motor-vehicle accident frequencies.” Transportation 25, 4: 395–413. 
Accessed May 15, 2020. 
https://www.researchgate.net/publication/226003223_The_relationship_among_highway_
geometrics_traffic-related_elements_and_motor-vehicle_accident_frequencies. 

Milton, J., V. N. Shankar, and F. Mannering. 2008. “Highway accident severities and the mixed 
logit model: an exploratory empirical analysis.” Accident Analysis and Prevention 40, 1: 
260–266. Accessed May 15, 2020. 
https://www.researchgate.net/publication/5635292_Highway_accident_severities_and_the
_mixed_logit_model_An_exploratory_empirical_analysis. 

MnDOT. 2011. Otter Tail County Safety Plan: Moving Toward Zero Deaths. Saint Paul, MN: 
Minnesota Department of Transportation. Accessed May 15, 2020. 
https://www.dot.state.mn.us/stateaid/trafficsafety/county/ottertail-crsp-final-aug2011.pdf. 

MnDOT. 2020. “County Roadway Safety Plans.” Accessed May 12, 2020. 
https://www.dot.state.mn.us/stateaid/county-roadway-safety-plans.html. 

Montgomery, D. C., E. A. Peck, and G. G. Vining. 2012. Introduction to Linear Regression 
Analysis. 5th ed. Hoboken, NJ: Wiley. Accessed May 15, 2020. 
https://www.wiley.com/en-
us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811. 

Musunuru, A., R. Wei, and R. J. Porter. 2017. “Predicting Day and Night Traffic Volumes on 
Rural Roads for Statistical Road Safety Modeling.” Transportation Research Record 
2659: 192–203. Accessed May 15, 2020. 
https://journals.sagepub.com/doi/abs/10.3141/2659-21. 

National Academy of Sciences. 2003a. NCHRP Report 500: Volume 1: A Guide for Addressing 
Aggressive-Driving Conditions. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v1.pdf. 

National Academy of Sciences. 2003b. NCHRP Report 500: Volume 2: A Guide for Addressing 
Collissions Involving Unlicensed Drivers and Drivers with Suspended or Revoked 
Licenses. Washington, DC: National Academy of Sciences. Accessed May 11, 2020. 
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v2.pdf. 

National Academy of Sciences. 2003c. NCHRP Report 500: Volume 3: A Guide for Addressing 
Collisions with Trees in Hazardous Locations. Washington, DC: National Academy of 
Sciences. Accessed May 11, 2020. 
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v3.pdf. 

National Academy of Sciences. 2003d. NCHRP Report 500: Volume 4: A Guide for Addressing 
Head-On Collisions. Washington, DC: National Academy of Sciences. Accessed May 11, 
2020. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v4.pdf. 

https://www.researchgate.net/publication/226003223_The_relationship_among_highway_geometrics_traffic-related_elements_and_motor-vehicle_accident_frequencies
https://www.researchgate.net/publication/226003223_The_relationship_among_highway_geometrics_traffic-related_elements_and_motor-vehicle_accident_frequencies
https://www.researchgate.net/publication/5635292_Highway_accident_severities_and_the_mixed_logit_model_An_exploratory_empirical_analysis
https://www.researchgate.net/publication/5635292_Highway_accident_severities_and_the_mixed_logit_model_An_exploratory_empirical_analysis
https://www.dot.state.mn.us/stateaid/trafficsafety/county/ottertail-crsp-final-aug2011.pdf
https://www.dot.state.mn.us/stateaid/county-roadway-safety-plans.html
https://www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811
https://www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811
https://journals.sagepub.com/doi/abs/10.3141/2659-21
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v1.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v2.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v3.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v4.pdf


 

284 

National Academy of Sciences. 2003e. NCHRP Report 500: Volume 5: A Guide for Addressing 
Unsignalized Intersection Collisions. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v5.pdf. 

National Academy of Sciences. 2003f. NCHRP Report 500: Volume 6: A Guide for Addressing 
Run-Off-Road Collisions. Washington, DC: National Academy of Sciences. Accessed 
May 11, 2020. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v6.pdf. 

National Academy of Sciences. 2004a. NCHRP Report 500: Volume 7: A Guide for Reducing 
Collisions on Horizontal Curves. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_on_H
orizontal_Curv_154782.aspx. 

National Academy of Sciences. 2004b. NCHRP Report 500: Volume 8: A Guide for Reducing 
Collisions Involving Utility Poles. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. https://www.nap.edu/catalog/23426/a-guide-for-reducing-
collisions-involving-utility-poles. 

National Academy of Sciences. 2004c. NCHRP Report 500: Volume 9: A Guide for Reducing 
Collisions Involving Older Drivers. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involv
ing_Older_Dr_154829.aspx. 

National Academy of Sciences. 2004d. NCHRP Report 500: Volume 10: A Guide for Reducing 
Collisions Involving Pedestrians. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involv
ing_Pedestri_154863.aspx. 

National Academy of Sciences. 2004e. NCHRP Report 500: Volume 11: A Guide for Increasing 
Seatbelt Use. Washington, DC: National Academy of Sciences. Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Increasing_Seatbelt_Use_15
4846.aspx. 

National Academy of Sciences. 2004f. NCHRP Report 500: Volume 12: A Guide for Reducing 
Collisions at Signalized Intersections. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_at_Sig
nalized_Inte_154972.aspx. 

National Academy of Sciences. 2004g. NCHRP Report 500: Volume 13: A Guide for Reducing 
Collisions Involving Heavy Trucks. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involv
ing_Heavy_Tr_154900.aspx. 

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v5.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_500v6.pdf
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_on_Horizontal_Curv_154782.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_on_Horizontal_Curv_154782.aspx
https://www.nap.edu/catalog/23426/a-guide-for-reducing-collisions-involving-utility-poles
https://www.nap.edu/catalog/23426/a-guide-for-reducing-collisions-involving-utility-poles
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Older_Dr_154829.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Older_Dr_154829.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Pedestri_154863.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Pedestri_154863.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Increasing_Seatbelt_Use_154846.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Increasing_Seatbelt_Use_154846.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_at_Signalized_Inte_154972.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_at_Signalized_Inte_154972.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Heavy_Tr_154900.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Heavy_Tr_154900.aspx


 

285 

National Academy of Sciences. 2005a. NCHRP Report 500: Volume 14: A Guide for Reducing 
Crashes Involving Drowsy and Distracted Drivers. Washington, DC: National Academy 
of Sciences. Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Crashes_Involvin
g_Drowsy_and_156333.aspx. 

National Academy of Sciences. 2005b. NCHRP Report 500: Volume 15: A Guide for Enhancing 
Rural Emergency Medical Services. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Enhancing_Rural_Emergenc
y_Medical_Serv_156339.aspx. 

National Academy of Sciences. 2005c. NCHRP Report 500: Volume 16: A Guide for Reducing 
Alcohol-Related Collisions. Washington, DC: National Academy of Sciences. Accessed 
May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_AlcoholRelated_
Collisions_156343.aspx. 

National Academy of Sciences. 2006. NCHRP Report 500: Volume 17: A Guide for Reducing 
Work Zone Collisions. Washington, DC: National Academy of Sciences. Accessed May 
11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Work_Zone_Coll
isions_156711.aspx. 

National Academy of Sciences. 2007. NCHRP Report 500: Volume 19: A Guide for Reducing 
Collisions Involving Young Drivers. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involv
ing_Young_Dr_159494.aspx. 

National Academy of Sciences. 2008a. NCHRP Report 500: Volume 18: A Guide for Reducing 
Colllisions Involving Bicycles. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involv
ing_Bicycles_156839.aspx. 

National Academy of Sciences. 2008b. NCHRP Report 500: Volume 20: A Guide for Reducing 
Head-On Crashes on Freeways. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_HeadOn_Crashes
_on_Freeways_159999.aspx. 

National Academy of Sciences. 2008c. NCHRP Report 500: Volume 21: Safety Data Ana 
Analysis In Developing Emphasis Area Plans. Washington, DC: National Academy of 
Sciences. Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/Safety_Data_and_Analysis_in_Developing
_Emphasis_Ar_160164.aspx. 

http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Crashes_Involving_Drowsy_and_156333.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Crashes_Involving_Drowsy_and_156333.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Enhancing_Rural_Emergency_Medical_Serv_156339.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Enhancing_Rural_Emergency_Medical_Serv_156339.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_AlcoholRelated_Collisions_156343.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_AlcoholRelated_Collisions_156343.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Work_Zone_Collisions_156711.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Work_Zone_Collisions_156711.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Young_Dr_159494.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Young_Dr_159494.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Bicycles_156839.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_Collisions_Involving_Bicycles_156839.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_HeadOn_Crashes_on_Freeways_159999.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_HeadOn_Crashes_on_Freeways_159999.aspx
http://www.trb.org/Publications/Public/Blurbs/Safety_Data_and_Analysis_in_Developing_Emphasis_Ar_160164.aspx
http://www.trb.org/Publications/Public/Blurbs/Safety_Data_and_Analysis_in_Developing_Emphasis_Ar_160164.aspx


286 

National Academy of Sciences. 2008d. NCHRP Report 500: Volume 22: A Guide for Addressing 
Collisions Involving Motorcycles. Washington, DC: National Academy of Sciences. 
Accessed May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Addressing_Collisions_Invo
lving_Motorc_160626.aspx. 

National Academy of Sciences. 2009. NCHRP Report 500: Volume 23: A Guide for Reducing 
Speeding-Related Crashes. Washington, DC: National Academy of Sciences. Accessed 
May 11, 2020. 
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_SpeedingRelated
_Crashes_160862.aspx. 

National Academy of Sciences. 2010. NCHRP Research Results Digest 345: Alternate Strategies 
for Safety Improvement Investments. Washington, DC: National Academy of Sciences. 

National Academy of Sciences. n.d. “NCHRP 17-84 [Active]: Pedestrian and Bicycle Safety 
Performance Functions for the Highway Safety Manual” (website). Accessed July 1, 
2019. https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4203. 

NEMSIS Technical Assistance Center. 2018. National EMS Database NEMSIS Public Release 
Research Data Set V3.3.4 and V3.4.0: 2017 User Manual. Washington, DC: National 
Highway Traffic Safety Administration. Accessed January 19, 2018. 
https://nemsis.org/wp-content/uploads/2019/06/NEMSIS-RDS-340-User-Manual_V4.pdf. 

NHTSA. 2008. National Motor Vehicle Crash Causation Survey Report to Congress. Report No. 
DOT HS 811 059. Washington, DC: National Highway Traffic Safety Administration. 
Accessed January 19, 2018. 
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059. 

NHTSA. 2017. MMUCC Guideline: Model Minimum Uniform Crash Criteria. 5th ed. 
Washington DC: National Highway Traffic Safety Administration. Accessed May 15, 
2020. https://crashstats.nhtsa.dot.gov/#/PublicationList/2. 

NHTSA. 2018a. “Fatality Analysis Reporting System (FARS)” (website). Accessed January 19, 
2018. https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars. 

NHTSA. 2018b. “National Automotive Sampling System (NASS) General Estimates System” 
(website). Accessed January 19, 2018. https://www.nhtsa.gov/national-automotive-
sampling-system-nass/nass-general-estimates-system. 

NHTSA. 2018c. “National Automotive Sampling System (NASS) Crashworthiness Data System” 
(website). Accessed January 19, 2018. https://www.nhtsa.gov/national-automotive-
sampling-system-nass/crashworthiness-data-system. 

NHTSA. 2018d. “Crash Injury Research” (website). Accessed January 19, 2018. 
https://www.nhtsa.gov/research-data/crash-injury-research. 

http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Addressing_Collisions_Involving_Motorc_160626.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Addressing_Collisions_Involving_Motorc_160626.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_SpeedingRelated_Crashes_160862.aspx
http://www.trb.org/Publications/Public/Blurbs/A_Guide_for_Reducing_SpeedingRelated_Crashes_160862.aspx
https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4203
https://nemsis.org/wp-content/uploads/2019/06/NEMSIS-RDS-340-User-Manual_V4.pdf
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811059
https://crashstats.nhtsa.dot.gov/#/PublicationList/2
https://www.nhtsa.gov/research-data/fatality-analysis-reporting-system-fars
https://www.nhtsa.gov/national-automotive-sampling-system-nass/nass-general-estimates-system
https://www.nhtsa.gov/national-automotive-sampling-system-nass/nass-general-estimates-system
https://www.nhtsa.gov/national-automotive-sampling-system-nass/crashworthiness-data-system
https://www.nhtsa.gov/national-automotive-sampling-system-nass/crashworthiness-data-system
https://www.nhtsa.gov/research-data/crash-injury-research


 

287 

NOAA. 2018. “National Oceanic and Atmospheric Administration” (website). Accessed 
January 19, 2018. https://www.noaa.gov. 

Orner, E., and A. Drakopoulos. 2007. Analysis of Run-Off-Road Crashes in Relation to Roadway 
Features and Driver Behavior. Proceedings from the 2007 Mid-Continent Transportation 
Research Symposium, Ames, Iowa. Accessed May 15, 2020. 
https://www.semanticscholar.org/paper/Analysis-of-Run-Off-Road-Crashes-in-Relation-
to-and-Ornek-Drakopoulos/0a53c6390036db3a671c3132d26e185baba799b7. 

Patel. R., F. Council, and M. Griffith. 2007. “Estimating Safety Benefits of Shoulder Rumble 
Strips on Two-Lane Rural Highways in Minnesota: Empirical Bayes Observational 
Before-and-After Study.” Transportation Research Record 2019: 205–211. Accessed 
May 15, 2020. https://trid.trb.org/view/801951. 

Persaud, B., M. Griffith, C. Hayden, J. Kononov, C. Lewis Ⅱ, R. Pain, P. M. Salzberg, et al. 
2001. NCHRP Synthesis 295: Statistical Methods in Highway Safety Analysis: A Synthesis 
of Highway Practice. Washington, DC: National Cooperative Highway Safety Research 
Program. Accessed January 19, 2018. 
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_295.pdf. 

Poch, M., and F. Mannering. 1996. “Negative Binomial Analysis of Intersection-Accident 
Frequencies.” Journal of Transportation Engineering 122, 2. Accessed May 15, 2020. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.4343&rep=rep1&type=pdf. 

Porter, R., T. Le, F. Gross, D. Carter, T. Saleem, and R. Srinivasan. 2020. Focus Crash Types 
and Contributing Factors: Quick Reference Guide. Report No. FHWA-HRT-20-053. 
Washington, DC: Federal Highway Administration. 

Potts, I. B., D. W. Harwood, D. Bokenkroger, and M. M. Knoshaug. 2011. Benefit/Cost 
Evaluation of MODOT’s Total Striping and Delineation Program. Project No. 110749. 
Kansas City, KS: MRI Global. Accessed May 15, 2020. https://trid.trb.org/view/1117526. 

Preston, H. 2012. “A Systemic Safety Project Identification Process – Minnesota’s County Road 
Safety Plans.” Presented at the South Dakota Transportation Safety Conference, 
April 2012. 

Preston, H., and M. Gute. 2010. “Mn/DOT County Road Safety Plans (CRSP).” Inciter 
(fall 2010): 12–13. Accessed January 19, 2018. 
http://www.dot.state.mn.us/stateaid/trafficsafety/county/inciter-2010-fall-crsp.pdf. 

Preston, H., R. Storm, J. Bennett, and B. Wemple. 2013a. Systemic Safety Project Selection Tool. 
Report No. FHWA-SA-13-019. Washington, DC: Federal Highway Administration. 
Accessed May 15, 2020. https://safety.fhwa.dot.gov/systemic/fhwasa13019. 

Preston, H., R. Storm, K. Scurry, and B. Wemple. 2013b. “Using Risk to Drive Safety 
Investments.” Public Roads 76, 6. Accessed May 15, 2020. 
https://www.fhwa.dot.gov/publications/publicroads/13mayjun/03.cfm. 

https://www.noaa.gov/
https://www.semanticscholar.org/paper/Analysis-of-Run-Off-Road-Crashes-in-Relation-to-and-Ornek-Drakopoulos/0a53c6390036db3a671c3132d26e185baba799b7
https://www.semanticscholar.org/paper/Analysis-of-Run-Off-Road-Crashes-in-Relation-to-and-Ornek-Drakopoulos/0a53c6390036db3a671c3132d26e185baba799b7
https://trid.trb.org/view/801951
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.4343&rep=rep1&type=pdf
https://trid.trb.org/view/1117526
http://www.dot.state.mn.us/stateaid/trafficsafety/county/inciter-2010-fall-crsp.pdf
https://safety.fhwa.dot.gov/systemic/fhwasa13019/
https://www.fhwa.dot.gov/publications/publicroads/13mayjun/03.cfm
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_295.pdf


288 

Rencher, A. C., and W. F. Christensen. 2012. Methods of Multivariate Analysis. 3rd ed. 
Hoboken, NJ: John Wiley & Sons. Accessed May 15, 2020. 
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118391686. 

Rossi, A., Amaddeo, F., Sandri, M., and Tansella, M. 2005. “Determinants of once-only contact 
in a community-based psychiatric service.” Social Psychiatry and Psychiatric 
Epidemiology 40, 1: 50–56. Accessed May 15, 2020. 
https://www.ncbi.nlm.nih.gov/pubmed/15624075. 

Segal, M. R. 2004. Machine Learning Benchmarks and Random Forest Regression. 
San Francisco, CA: Center for Bioinformatics and Molecular Biostatistics. 

Shankar, V., F. Mannering, and W. Barfield. 1995. “Effect of Roadway Geometrics and 
Environmental Factors on Rural Freeway Accident Frequencies.” Accident Analysis and 
Prevention 27, 3: 371–389. Accessed May 15, 2020. 
https://www.sciencedirect.com/science/article/abs/pii/000145759400078Z. 

Smiley, A. 2008. “Point of View: Driver Behavior: A Moving Target.” TR News 254. Accessed 
May 15, 2020. https://trid.trb.org/view/850893. 

Strobl, C., J. Malley, and G. Tutz. (2009). An Introduction to recursive partitioning. Report No. 
55. Munich, Germany: University of Munich.

Tarko, A. P., L. Mingyang, M. Romero, and J. Thomaz. 2014. A Systematic Approach to 
Identifying Traffic Safety Needs and Intervention Programs for Indiana: Volume I—
Research Report. Joint Transportation Research Program Publication No. 
FHWA/IN/JTRP-2014/03. West Lafayette, IN: Purdue University. Accessed May 15, 
2020. https://docs.lib.purdue.edu/jtrp/1556/. 

Thomas, L., B. Lan, R. L. Sanders, A. Frackelton, S. Gardner, and M. Hintze. 2017. “Changing 
the future? Development and application of pedestrian safety performance functions to 
prioritize locations in Seattle, Washington.” Transportation Research Record 2659:  
212–223. Accessed May 15, 2020. https://journals.sagepub.com/doi/10.3141/2659-23. 

Thomas, L., W. Kumfer, K. Lang, C. Zeeger, L. Sandt, B. Lan, K. Nordback, et al. 2018. 
Systemic Pedestrian Safety Analysis: Contractor’s Technical Report. Project No. 17-27. 
Washington, DC: National Cooperative Highway Safety Research Program. Accessed 
July 1, 2019. http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_893_Contractor.pdf. 

usRAP. 2020. “What is usRAP?” (website). Accessed May 11, 2020. http://www.usrap.org/what-
usrap. 

U.S. Census Bureau. 2018. “Socioeconomic Census Data” (website). Accessed January 19, 2018. 
https://www.census.gov/data.html. 

Virginia Tech Transportation Institute. 2018. “InSight Data Access Website SHRP2 Naturalistic 
Driving Study” (website). Accessed January 19, 2018. https://insight.shrp2nds.us. 

https://onlinelibrary.wiley.com/doi/book/10.1002/9781118391686
https://www.ncbi.nlm.nih.gov/pubmed/15624075
https://www.sciencedirect.com/science/article/abs/pii/000145759400078Z
https://trid.trb.org/view/850893
https://docs.lib.purdue.edu/jtrp/1556/
https://journals.sagepub.com/doi/10.3141/2659-23
http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_893_Contractor.pdf
http://www.usrap.org/what-usrap
http://www.usrap.org/what-usrap
https://www.census.gov/data.html
https://insight.shrp2nds.us/


289 

Waller, L. A., and C. A. Gotway. 2004. Applied Spatial Statistics for Public Health Data. 
Hoboken, NJ: John Wiley & Sons. Accessed May 15, 2020. 
https://onlinelibrary.wiley.com/doi/book/10.1002/0471662682. 

Wang, J., W. Hughes, and R. Stewart. 1998. Safety Effects of Cross-Section Design on Rural 
Multi-Lane Highways. Report No. FHWA-RD-98-071. Washington, DC: Federal 
Highway Administration. 

Wang, Y., S. Sharda, and H. Wang. 2016. “A Systemic Safety Analysis of Pedestrian Crashes: 
Lessons Learned.” Presented at 95th Annual Meeting of the Transportation Research 
Board. Washington, DC. Accessed May 15, 2020. https://trid.trb.org/view/1393638. 

Weisberg, S. 2014. Applied Linear Regression. 4th ed. Hoboken, NJ: Wiley. Accessed May 15, 
2020. https://www.wiley.com/en-us/Applied+Linear+Regression%2C+4th+Edition-p-
9781118386088. 

Wilder, R. D. 2011. Centerline Rumble Strips on Secondary Highways – A Systemic Crash 
Analysis. New York, NY: New York State Department of Transportation. Accessed 
January 19, 2018. 
https://www.dot.ny.gov/programs/rumblestrips/repository/Centerline%20Rumble%20Stri
ps%20on%20Secondary%20Highways.pdf. 

Zegeer, C. V. 1986. “Methods for identifying hazardous highway elements.” NCHRP Synthesis 
of Highway Practice 128. Washington, DC: Transportation Research Board. Accessed 
May 15, 2020. http://www.trb.org/Publications/Blurbs/154502.aspx. 

Zegeer, C., J. Hummer, D. Reinfurt, L. Herf, and W. Hunter. 1987. Safety Effects of 
Cross-Section Design for Two-Lane Roads – Volume I – Final Report. Report No. 
FHWA-RD-87/008. Washington, DC: Federal Highway Administration. Accessed May 
15, 2020. https://trid.trb.org/view/274947. 

https://onlinelibrary.wiley.com/doi/book/10.1002/0471662682
https://trid.trb.org/view/1393638
https://www.wiley.com/en-us/Applied+Linear+Regression%2C+4th+Edition-p-9781118386088
https://www.wiley.com/en-us/Applied+Linear+Regression%2C+4th+Edition-p-9781118386088
https://www.dot.ny.gov/programs/rumblestrips/repository/Centerline%20Rumble%20Strips%20on%20Secondary%20Highways.pdf
https://www.dot.ny.gov/programs/rumblestrips/repository/Centerline%20Rumble%20Strips%20on%20Secondary%20Highways.pdf
http://www.trb.org/Publications/Blurbs/154502.aspx
https://trid.trb.org/view/274947










HRDS-20/11-20(300)ERecycled
Recyclable


	EXECUTIVE SUMMARY
	FCFTS
	ANALYSIS OF CONTRIBUTING FACTORS
	COUNTERMEASURE-SELECTION PROCESS

	CHAPTER 1. INTRODUCTION
	BACKGROUND
	SYSTEMIC APPROACH TO ROAD-SAFETY MANAGEMENT
	OBJECTIVE
	ORGANIZATION OF THE REPORT

	CHAPTER 2. LITERATURE REVIEW
	OVERVIEW OF CONTRIBUTING FACTORS AND METHODS
	Contributing Factors
	User Types
	Crash Severities and Types
	Facility Types
	Contributing Roadway Factors

	Datasets
	Methodologies
	Normal Linear Regression Models
	Generalized Linear Models
	Longitudinal Analyses
	Survival Analysis
	Spatial Modeling
	Bayesian Modeling
	Other Methods


	APPROACHES TO SYSTEMIC SAFETY ANALYSIS
	SUMMARY

	CHAPTER 3. TERMINOLOGY
	CHAPTER 4. FCFTS
	FARS DATABASE AND ELEMENTS
	HSIS DATABASE AND ELEMENTS
	KEY VARIABLES FOR DEFINING POTENTIAL FCFTS
	Crash Type
	Area Type
	Roadway Type
	Location Type
	Intersection Type
	Traffic Control Type
	Light Condition
	Road Alignment Type (Nonintersection Crashes)
	Fatal and Incapacitating Injury Crash

	POTENTIAL FCFTS
	SELECTING FCFTS
	Intersection FCFTs
	Nonintersection FCFTs


	CHAPTER 5. CONTRIBUTING FACTORS
	DATA
	POTENTIAL CONTRIBUTING FACTORS
	Roadway
	Climate
	Census

	SUMMARY OF DATA
	Lane Width
	Shoulder Type
	Surface Type
	Terrain Type
	Curve Radius
	Data Quality Checks

	ANALYSIS METHODOLOGY
	RESULTS
	ROR CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS
	Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime

	Washington
	Highway Tangent Segments—Daytime
	Highway Tangent Segments—Nighttime
	Horizontal Curves—Daytime
	Horizontal Curves—Nighttime

	Discussion

	LNDP CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS
	Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime

	Washington
	Highway Tangent Segments—Daytime
	Highway Tangent Segments—Nighttime
	Horizontal Curves—Daytime
	Horizontal Curves—Nighttime

	Discussion

	HEO CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS
	Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime

	Washington
	Highway Tangent Segments—Daytime
	Highway Tangent Segments—Nighttime
	Horizontal Curves—Daytime
	Horizontal Curves—Nighttime

	Discussion

	ROLL CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS
	Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime

	Washington
	Highway Tangent Segments—Daytime
	Highway Tangent Segments—Nighttime
	Horizontal Curves—Daytime
	Horizontal Curves—Nighttime

	Discussion

	ANG CRASHES ON RURAL TWO-LANE HIGHWAY SEGMENTS
	Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime

	Washington
	Highway Tangent Segments—Daytime

	Discussion

	ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL TWO-LANE ROADS
	California
	Daytime
	Nighttime

	Ohio
	Daytime
	Nighttime

	Discussion

	ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON URBAN TWO-LANE ROADS
	California
	Daytime

	Ohio
	Daytime

	Discussion

	ANG CRASHES AT FOUR-LEG SIGNALIZED INTERSECTIONS ON URBAN MULTILANE DIVIDED ROADS
	California
	Daytime

	Ohio
	Daytime

	Discussion

	ANG CRASHES AT FOUR-LEG SIGNALIZED INTERSECTIONS ON URBAN MULTILANE UNDIVIDED ROADS
	California
	Daytime

	Ohio
	Daytime

	Discussion

	ANG CRASHES AT THREE-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL TWO-LANE ROADS
	California
	Daytime

	Ohio
	Daytime

	Discussion

	ANG CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL MULTILANE DIVIDED ROADS
	California
	Daytime

	Ohio
	Daytime

	Discussion

	PEDESTRIAN CRASHES

	CHAPTER 6. COUNTERMEASURE-SELECTION PROCESS
	BACKGROUND RELEVANT TO COUNTERMEASURE SELECTION
	Roadway Variables
	Socioeconomic Variables
	Climate Variables

	STEP 1. IDENTIFY A FOCUS CRASH TYPE
	Approach
	Example

	STEP 2. IDENTIFY CONTRIBUTING FACTORS FOR THE FOCUS CRASH TYPE
	Approach
	Example

	STEP 3. ASSEMBLE A LIST OF POTENTIAL COUNTERMEASURES THAT ADDRESS THE CRASH TYPE
	Approach
	Example

	STEP 4. IDENTIFY COUNTERMEASURES THAT EXPLICITLY ADDRESS CONTRIBUTING FACTORS ASSOCIATED WITH THE FOCUS CRASH TYPE
	Approach
	Example

	STEP 5. IDENTIFY COUNTERMEASURES WITH CMFS
	Approach
	Example

	STEP 6. SELECT A COUNTERMEASURE
	Approach
	Example

	ADDITIONAL EXAMPLES
	Example 1: HEO Crashes
	Example 2: ANG Crashes

	TARGETED COUNTERMEASURES FOR CONTRIBUTING FACTORS
	Auxiliary Turn Lanes (FHWA 2017a)
	Yellow Change Intervals (FHWA 2017a)
	Backplates with Retroreflective Borders (FHWA 2017a)
	Application of Multiple Low-Cost Countermeasures (FHWA 2017a)
	Advance Signs (ITE 2015)
	SafetyEdge (FHWA 2017a)
	Rumble Strips or Stripes (FHWA 2017a)
	Enhanced Friction for Horizontal Curves (FHWA 2017a)
	Enhanced Delineation for Horizontal Curves (FHWA 2017a)
	Roadside-Design Improvements at Curves (FHWA 2017a)
	Advance Markings for Curves (Albin et al. 2016)
	Advance Signs (Albin et al. 2016)


	CHAPTER 7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
	IDENTIFYING FCFTS
	IDENTIFYING CONTRIBUTING FACTORS ASSOCIATED WITH FCFTS
	PROCESS FOR SELECTING COUNTERMEASURES
	CONCLUSIONS AND RECOMMENDATIONS
	Identifying FCFTs
	Identifying Contributing Factors
	Methodologies
	Roadway, Socioeconomic, and Weather Factors

	Implementing and Evaluating Countermeasures


	APPENDIX A. LIST OF VARIABLES USED FROM FARS AND HSIS FOR FCFT SELECTION
	LIST OF FARS VARIABLES USED FOR FCFT SELECTION
	Common Variables
	Accident Data File
	Vehicle Data File
	Person Data File

	LIST OF HSIS WASHINGTON VARIABLES USED FOR FCFT SELECTION
	Common Variables
	Accident Data Files
	Roadway and Curve Data Files

	LIST OF HSIS OHIO VARIABLES USED FOR FCFT SELECTION
	Common Variables
	Accident Data Files
	Roadway Data Files

	LIST OF HSIS CALIFORNIA VARIABLES USED FOR FCFT SELECTION
	Common Variables
	Accident Data Files
	Roadway and Intersection Data Files

	LIST OF HSIS MINNESOTA VARIABLES USED FOR FCFT SELECTION
	Common Variables
	Accident Data Files
	Roadway Data Files


	APPENDIX B. SYSTEMIC SAFETY-PLANNING PROCESS
	APPENDIX C. POTENTIAL INTERSECTION AND NONINTERSECTION FCFTS FROM FARS AND HSIS
	APPENDIX D. RANDOM-FOREST R CODE
	APPENDIX E. RANDOM-FOREST OUTPUTS
	RANDOM FORESTS OF CALIFORNIA DATA
	RANDOM FORESTS OF WASHINGTON DATA
	RANDOM FORESTS OF OHIO DATA

	APPENDIX F. SAMPLE PLOTS OF RANDOM FOREST–PREDICTED CRASH FREQUENCIES VERSUS PREDICTOR VARIABLES
	ANG-D CRASHES AT FOUR-LEG STOP-CONTROLLED INTERSECTIONS ON RURAL TWO-LANE ROADS
	ROR-D CRASHES AT HORIZONTAL CURVES ON RURAL TWO-LANE HIGHWAY SEGMENTS

	APPENDIX G. EXPLORATION OF FACTOR ANALYSIS
	FACTOR ANALYSIS
	Curves and Tangent Segments on Rural Two-Lane Highway Roads
	Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads
	Four-Leg Signalized Intersections on Urban Multilane Undivided Roads

	RESULTS FROM THE CONTRIBUTING-FACTOR ANALYSIS
	ROR Crashes on Rural Two-Lane Highway Roads in Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime
	Discussion

	LNDP Crashes on Rural Two-Lane Highway Segments in Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime
	Discussion

	HEO Crashes on Rural Two-Lane Highway Segments in Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime
	Discussion

	ROLL Crashes on Rural Two-Lane Highway Segments in Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Horizontal Curves and Highway Tangent Segments—Nighttime
	Discussion

	ANG Crashes on Rural Two-Lane Highway Segments in Ohio
	Horizontal Curves and Highway Tangent Segments—Daytime
	Discussion

	ANG Crashes at Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads in Ohio
	Daytime
	Discussion

	ANG Crashes at Four-Leg Stop-Controlled Intersections on Urban Two-Lane Roads in Ohio
	Daytime
	Discussion


	SUMMARY OF RESULTS FROM THE CONTRIBUTING-FACTOR ANALYSIS
	Intersection FCFTs
	Nonintersection FCFTs


	APPENDIX H. OBSERVING PREDICTION MSEs TO EXPLORE CONTRIBUTIONS OF SOCIOECONOMIC VARIABLES
	REFERENCES
	Blank Page



